zbMATH — the first resource for mathematics

On the Gerber-Shiu discounted penalty function for subexponential claims. (English) Zbl 1131.60080
Lith. Math. J. 46, No. 4, 487-493 (2006); and Liet. Mat. Rink. 46, No. 4, 598-605 (2006).
Summary: We obtain the asymptotics of the H. U. Gerber and E. S. W. Shiu [N. Am. Actuar. J. 2, No. 1, 48–78 (1998; Zbl 1081.60550)] discounted penalty function in the classical Lundberg model. We consider claims from a class of subexponential distributions and find the asymptotics as the initial surplus \(x\) tends to infinity. The main term of the discounted penalty function \(\psi (x, \delta)\) has different expressions in the cases where the interest rate \(\delta > 0\) and where \(\delta = 0\).

60K10 Applications of renewal theory (reliability, demand theory, etc.)
60K05 Renewal theory
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI
[1] S. Drekic and G. E. Willmot, On the density and moments of the time of ruin with exponential claims, ASTIN Bulletin, 33(1), 11–21 (2003). · Zbl 1062.60007 · doi:10.2143/AST.33.1.1036
[2] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events, Springer, Berlin (1997).
[3] P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics, 1(1), 55–72 (1982). · Zbl 0518.62083 · doi:10.1016/0167-6687(82)90021-X
[4] J. M. A. Garsia, Explicit solutions for survival probabilities in the classical risk model, ASTIN Bulletin, 35(1), 113–130 (2005). · Zbl 1101.62100 · doi:10.2143/AST.35.1.583168
[5] H. Gerber and E. Shiu, On the time value of ruin, North Amer. Actuarial J., 2(1), 48–78 (1998). · Zbl 1081.60550
[6] T. Mikosch, Non-Life Insurance Mathematics, Springer, Berlin (2004). · Zbl 1033.91019
[7] G. E. Willmot and D. C. M. Dickson, The Gerber-Shiu discounted penalty function in the stationary renewal risk model, Insurance: Mathematics and Economics, 32, 403–411 (2003). · Zbl 1072.91027 · doi:10.1016/S0167-6687(03)00129-X
[8] G. E. Willmot and X. S. Lin, Approximations for Compound Distributions with Insurance Applications, Springer, New York (2001). · Zbl 0962.62099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.