×

zbMATH — the first resource for mathematics

Towards scalable linear-optical quantum computers. (English) Zbl 1130.81318
Summary: Scalable quantum computation with linear optics was considered to be impossible due to the lack of efficient two-qubit logic gates, despite the ease of implementation of one-qubit gates. Two-qubit gates necessarily need a nonlinear interaction between the two photons, and the efficiency of this non-linear interaction is typically very small in bulk materials. However, it has recently been shown that this barrier can be circumvented with effective nonlinearities produced by projective measurements, and with this work linear-optical quantum computing becomes a new avenue towards scalable quantum computation. We review several issues concerning the principles and requirements of this scheme.

MSC:
81P68 Quantum computation
81-05 Experimental work for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).
[2] G. G. Lapaire, P. Kok, J. P. Dowling, and J. E. Sipe, Phys. Rev. A 68, 042314 (2003).
[3] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 64, 062311 (2001).
[4] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 66, 052305 (2002).
[5] D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
[6] J. D. Franson et al., Phys. Rev. Lett. 89, 137901 (2002).
[7] E. Knill, R. Laflamme, and G. J. Milburn, quant-ph/0006120 (2000).
[8] D. F. V. James and P. G. Kwiat, Phys. Rev. Lett. 89, 183601 (2002).
[9] A. Imamoglu, Phys. Rev. Lett. 89, 163602 (2002).
[10] E. Waks, et al., IEEE J. Sel. Top. Quant. Ele. 9, 1502 (2003).
[11] T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 68, 032316 (2003).
[12] J. L. O’Brien et al., Nature 426, 264 (2003).
[13] K. Sanaka et al., Phys. Rev. Lett. 92, 017902 (2004).
[14] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. Lett. 88, 257902 (2002).
[15] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. Lett. A 69, 042306 (2004).
[16] D. Achilles et al. (in press) J. Mod. Opt. quant-ph/0310183 (2003); H. Lee et al., J. Mod. Opt., quant-ph/0310161 (2003).
[17] T. B. Pittman and J. D. Franson, Phys. Rev. Lett. 90, 240401 (2003).
[18] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A 66, 042303 (2002).
[19] T. B. Pittman and J. D. Franson, Phys. Rev. A 66, 062302 (2002).
[20] R. M. Gingrich et al., Phys. Rev. Lett. 91, 217901 (2003).
[21] G. Nogues et al., Nature 400, 239 (1999).
[22] P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 66, 063814 (2002).
[23] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).
[24] P. Kok, C. P. Williams, and J. P. Dowling, Phys. Rev. A 68, 022301 (2003).
[25] R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
[26] N. Yoran and B. Reznik, Phys. Rev. Lett. 91, 037903 (2003).
[27] M. Nielsen, quant-ph/0402005 (2004).
[28] J. D. Franson, T. B. Pittman, and B. C. Jacobs, quant-ph/0401133 (2004).
[29] J. P. Dowling and G. J. Milburn, Phil. Trans. R. Soc. Lond. A 361, 1655 (2003).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.