zbMATH — the first resource for mathematics

Discrete singular convolution-finite subdomain method for the solution of incompressible viscous flows. (English) Zbl 1130.76403
Summary: This paper proposes a discrete singular convolution-finite subdomain method (DSC-FSM) for the analysis of incompressible viscous flows in multiply connected complex geometries. The DSC algorithm has its foundation in the theory of distributions. A block-structured grid of fictitious overlapping interfaces is designed to decompose a complex computational geometry into a finite number of subdomains. In each subdomain, the governing Navier-Stokes equations are discretized by using the DSC algorithm in space and a third-order Runge-Kutta scheme in time. Information exchange between fictitious overlapping zones is realized by using the DSC interpolating algorithm. The Taylor problem, with decaying vortices, could be solved to machine precision, with an excellent comparison against the exact solution. The reliability of the proposed method is tested by simulating the flow in a lid-driven cavity. The utility of the DSC-FSM approach is further illustrated by two other benchmark problems, viz., the flow over a backward-facing step and the laminar flow past a square prism. The present results compare well with the numerical and experimental data available in the literature.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] D. Gottlieb, M. Y. Hussaini, and, S. A. Orszag, in, Spectral Methods for Partial Differential Equations, edited by, R. G. Voigt, D. Gottlieb, and M. Y. Hussaini, SIAM, Philadelphia, 1984, p, 0.
[2] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., spectral methods in fluid dynamics, (1988), Springer-Verlag Berlin · Zbl 0658.76001
[3] Orszag, S.A., Comparison of pseudospectral and spectral approximations, Stud. appl. math., 51, 253, (1972) · Zbl 0282.65083
[4] Fornberg, B., A practical guide to pseudospectral methods, (1996), Cambridge Univ. Press Cambridge · Zbl 0844.65084
[5] Cooley, J.W.; Tukey, J.W., An algorithm for the machine calculation of complex Fourier series, Math. comput., 19, 297, (1965) · Zbl 0127.09002
[6] Walker, J.S., fast Fourier transforms, (1996), CRC Press Boca Raton
[7] Bellman, R.; Kashef, B.G.; Casti, J., A technique for the rapid solution of nonlinear partial differential equations, J. comput. phys., 10, 40, (1972) · Zbl 0247.65061
[8] Forsythe, G.E.; Wasow, W.R., finite-difference methods for partial differential equations, (1960), Wiley New York · Zbl 0099.11103
[9] Tsai, W.T.; Yue, D.K.P., Computation of nonlinear free-surface flows, Annu. rev. fluid mech., 28, 249, (1996)
[10] Zienkiewicz, O.C., the finite element method in engineering science, (1971), McGraw-Hill London · Zbl 0237.73071
[11] Oden, J.T., finite elements of nonlinear continua, (1972), McGraw-Hill New York · Zbl 0235.73038
[12] Fenner, R.T., finite element methods for engineers, (1975), Imperial College Press London
[13] Reddy, J.N., energy and variational methods in applied mechanics, (1984), Wiley New York · Zbl 0635.73017
[14] Glowinski, R.; Pironneau, O., Finite element methods for navier – stokes equations, Annu. rev. fluid mech., 24, 167, (1992) · Zbl 0743.76051
[15] Cheung, Y.K., finite strip methods in structural analysis, (1976), Pergamon Oxford · Zbl 0375.73073
[16] Puckett, E.G.; Almgren, A.S.; Bell, J.B.; Marcus, D.L.; Rider, W.J., A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. comput. phys., 130, 267, (1997)
[17] Patera, A.T., A spectral element methods for fluid dynamics: laminar flow in a channel expansion, J. comput. phys., 54, 468, (1984) · Zbl 0535.76035
[18] Ku, H.C., Solution of flow in complex geometries by the pseudospectral element method, J. comput. phys., 117, 215, (1995) · Zbl 0822.76073
[19] Kravchenko, A.G.; Moin, P.; Shariff, K., B-spline method and zonal grids for simulations of complex turbulent flows, J. comput. phys., 151, 757, (1999) · Zbl 0942.76058
[20] Orszag, S.A., Spectral methods for problems in complex geometries, J. comput. phys., 37, 70, (1980) · Zbl 0476.65078
[21] Dimitropoulos, C.D.; Edwards, B.J.; Chae, K.S.; Beris, A.N., Efficient pseudospectral flow simulations in moderately complex geometries, J. comput. phys., 144, 517, (1998) · Zbl 0929.76094
[22] Yang, H.H.; Seymour, B.R.; Shizgal, B.D., A Chebyshev pseudospectral multidomain method for steady flow past a cylinder, Comput. fluids, 23, 829, (1994) · Zbl 0817.76064
[23] Wei, G.W., Discrete singular convolution for the solution of the fokker – planck equations, J. chem. phys., 110, 8930, (1999)
[24] Wei, G.W., A unified approach for solving the fokker – planck equation, J. phys. A, 33, 343, (2000)
[25] Wei, G.W., Solving quantum eigenvalue problems by discrete singular convolution, J. phys. B, 33, 343, (2000)
[26] Wei, G.W., A unified method for solving Maxwell’s equation, Proceedings, Asia-Pacific microwave conference, 562, (1999)
[27] Wei, G.W., A new algorithm for solving some mechanical problems, Comput. methods appl. mech. eng., 190, 2017, (2001) · Zbl 1013.74081
[28] Wei, G.W., Vibration analysis by discrete singular convolution, J. sound vib., 244, 535, (2001) · Zbl 1237.74095
[29] Wei, G.W., Discrete singular convolution method for the sine – gordon equation, Physica D, 137, 247, (2000) · Zbl 0944.35087
[30] Ablowitz, M.J.; Herbst, B.M.; Schober, C., On numerical solution of the sine – gordon equation, J. comput. phys., 126, (1996) · Zbl 0866.65064
[31] Guan, S.; Lai, C.-H.; Wei, G.W., Fourier – bessel analysis of patterns in a circular domain, Physica D, 151, 83, (2001) · Zbl 1076.35535
[32] Wan, D.C.; Zhou, Y.C.; Wei, G.W., Numerical solutions for unsteady incompressible flow using discrete singular convolution method, Int. J. numer. methods fluids, 38, 789, (2002) · Zbl 1005.76072
[33] Wan, D.C.; Wei, G.W., Numerical study of Euler and navier – stokes equations by efficient discrete singular convolution method, ACTA mech. sin., 16, 223, (2000)
[34] Wei, G.W., Quasi wavelets and quasi interpolating wavelets, Chem. phys. lett., 296, 215, (1998)
[35] L. S. Caretto, A. D. Gosman, S. V. Patankar, and, D. B. Spalding, Two calculation procedures for steady, three-dimensional flows with recirculation, in, Proc. Third Int. Conf. Numer. Methods Fluid Dyn, Paris, 1972. · Zbl 0255.76031
[36] Zwart, P.J.; Raithby, G.D.; Raw, M.J., The integrated space – time finite volume method and its application to moving boundary problems, J. comput. phys., 154, 497, (1999) · Zbl 0952.76049
[37] Patankar, S.V., numerical heat transfer and fluid flow, (1980), McGraw-Hill New York
[38] Fletcher, C.A.J., computational techniques for fluid dynamics—fundamental and general techniques, (1988), Springer-Verlag Berlin/New York · Zbl 0706.76001
[39] Harlow, F.H.; Welcch, J.E., Numerical study of large amplitude free surface motion, Phys. fluids, 9, 842, (1966)
[40] Chorin, A.J., A numerical method for solving incompressible viscous flow problems, J. comput. phys., 135, 118, (1997) · Zbl 0899.76283
[41] Peyret, R.; Taylor, T.D., computational methods for fluid flow, Springer series in computer physics, (1980), Springer-Verlag Berlin/Heidelberg
[42] Shankar, P.N.; Deshpande, M.D., Fluid mechanics of the driven cavity, Annu. rev. fluid mech., 32, 93, (2000) · Zbl 0988.76006
[43] Tezduyar, T.E.; Liou, J.; Ganjoo, D.K.; Behr, M., Solution techniques for the vorticity-streamfunction formulation of 2-dimensional unsteady incompressible flows, Int. J. numer. methods fluids, 11, 515, (1990) · Zbl 0711.76020
[44] Ghia, U.; Ghia, K.N.; Shin, C.T., High-resolutions for incompressible flow using the navier – stokes equations and a multigrid method, J. comput. phys., 48, 387, (1982) · Zbl 0511.76031
[45] Campion-Rrenson, A.; Crochet, M.J., On the streamfunction-vorticity finite element solutions of navier – stokes equations, Int. J. numer. methods eng., 12, 1809, (1978) · Zbl 0394.76032
[46] Ozawa, S., Numerical studies of steady flow in a two-dimensional square cavity at high Reynolds numbers, J. phys. soc. jpn., 38, 889, (1975)
[47] Armaly, B.F.; Durst, F.; Pereira, J.C.F.; Schoung, B., Experimental and theoretical investigation of backward-facing step flow, J. fluid mech., 127, 473, (1983)
[48] Sethian, J.A.; Ghoniem, A.F., Validation-study of vortex methods, J. comput. phys., 74, 283, (1988) · Zbl 0632.76056
[49] Zhu, J.Y., The 2nd-order projection method for the backward-facing step flow, J. comput. phys., 117, 318, (1995) · Zbl 0836.76066
[50] Pavlov, A.N.; Sazhin, S.S.; Fedorenko, R.P.; Heikal, M.R., A conservative finite difference method and its application for the analysis of a transient flow around a square prism, Int. J. numer. methods heat fluid flow, 10, 6, (2000) · Zbl 0966.76061
[51] Sohankar, A.; Norberg, C.; Davidson, L., Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition, Int. J. numer. methods fluids, 26, 39, (1998) · Zbl 0910.76067
[52] Arnal, M.P.; Goering, D.J.; Humphrey, J.A.C., Vortex shedding from a bluff body adjacent to a plane sliding wall, J. fluids eng., 113, 384, (1991)
[53] Li, G.; Humphrey, J.A.C., Numerical modeling of confined flow past a cylinder of square cross-section at various orientations, Int. J. numer. methods fluids, 20, 1215, (1995) · Zbl 0840.76054
[54] Davis, R.W.; Moore, E.F., A numerical study of vortex shedding from rectangles, J. fluid mech., 116, 474, (1982) · Zbl 0491.76042
[55] Okajima, A., Strouhal numbers of rectangular cylinders, J. fluid mech., 123, 379, (1982)
[56] Williamson, C.H.K., Vortex dynamics in the cylinder wake, Annu. rev. fluid mech., 28, 477, (1996) · Zbl 0899.76129
[57] Breuer, M.; Bernsdorf, J.; Zeiser, T.; Durst, F., Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite volume, Int. J. heat fluid flow, 21, 186, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.