zbMATH — the first resource for mathematics

Analysis of an exact fractional step method. (English) Zbl 1130.76394
Summary: An exact fractional step or projection method for solving the incompressible Navier-Stokes equations is analyzed. The method is applied to both structured and unstructured staggered mesh schemes. There are no splitting errors associated with the method; it satisfies the incompressibility condition to machine precision and reduces the number of unknowns. The exact projection technique is demonstrated on a two-dimensional cavity flow and a multiply connected moving domain with a free surface. Its performance is compared directly to classic fractional step methods and shown to be roughly twice as efficient. Boundary conditions and the relationship of the method to streamfunction-vorticity methods are discussed.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Rannacher, R., the navier – stokes equations II—theory and numerical methods, (1992), Springer-Verlag Berlin
[2] Strikwerda, J.C.; Lee, Y.S., The accuracy of the fractional step method, SIAM J. numer. anal., 37, 37, (1999) · Zbl 0953.65061
[3] Brown, D.; Cortez, R.; Minion, M., Accurate projection methods for the incompressible navier – stokes equations, J. comput. phys., 168, 464, (2001) · Zbl 1153.76339
[4] Lee, M.; Oh, B.D.; Kim, Y.B., Canonical fractional-step methods and consistent boundary conditions for the incompressible navier – stokes equations, J. comput. phys., 168, 73, (2001) · Zbl 1074.76585
[5] Temam, R., Remark on the pressure boundary condition for the projection method, Theor. comput. fluid dyn., 3, 181, (1991) · Zbl 0738.76054
[6] E, W.; Liu, J., Projection method. I: convergence and numerical boundary layers, SIAM J. numer. anal., 32, 1017, (1995) · Zbl 0842.76052
[7] Perot, J.B., An analysis of the fractional step method, J. comput. phys., 108, (1993) · Zbl 0778.76064
[8] Dukowitcz, J.K.; Dvinsky, A.S., Approximation factorization as a high order splitting for the implicit incompressible flow equations, J. comput. phys., 102, 336, (1992) · Zbl 0760.76059
[9] Bell, J.B.; Collela, P.; Glaz, H.M., A second order projection method for the incompressible navier – stokes equations, J. comput. phys., 85, (1989)
[10] Chorin, A.J., Numerical solution of the navier – stokes equations, Math. comput., 22, 745, (1968) · Zbl 0198.50103
[11] Gresho, P.M.; Chan, S.T., On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. part 2: implementation, Int. J. numer. methods fluids, 11, 621, (1990) · Zbl 0712.76036
[12] Kim, J.; Moin, P., Application of the fractional-step method to the incompressible navier – stokes equations, J. comput. phys., 59, 108, (1985)
[13] Van Kan, J., A second order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. sci. comput., 7, 870, (1986) · Zbl 0594.76023
[14] Perot, J.B., Comments on the fractional step method, J. comput. phys., 121, 190, (1995) · Zbl 0840.76057
[15] Harlow, F.H.; Welch, J.E., Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface, Phys. fluids, 8, 2182, (1965) · Zbl 1180.76043
[16] Lilly, D.K., On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems, Mon. weather rev., 93, 11, (1965)
[17] R. A. Nicolaides, The covolume approach to computing incompressible flows, in, Algorithmic Trends in Computational Fluid Dynamics, edited by, M. Y. Hussaini, A. Kumar, and M. D. Salas, Springer-Verlag, Berlin/New York, 1993, p, 295. · Zbl 1189.76392
[18] Chou, S.H., Analysis and convergence of a covolume method for the generalized Stokes problem, Math. comput., 66, 85, (1997) · Zbl 0854.65091
[19] Perot, J.B., Conservation properties of unstructured staggered mesh schemes, J. comput. phys., 159, 58, (2000) · Zbl 0972.76068
[20] Zhang, X.; Schmidt, D.; Perot, J.B., Accuracy and conservation properties of a three-dimensional staggered mesh scheme, J. comput. phys., 175, 764-791, (2002) · Zbl 1018.76036
[21] R. A. Nicolaides, The covolume approach to computing incompressible flow, in, Incompressible Computational Fluid Dynamics, edited by, M. D. Gunzburger and R. A. Nicolaides, Cambridge Univ. Press, Cambridge, UK, 1993, p, 295. · Zbl 1189.76392
[22] Girault, V.; Raviart, P., finite element approximation of the navier – stokes equations, (1986), Springer-Verlag Berlin · Zbl 0413.65081
[23] Turek, S., Tools for simulating non-stationary incompressible flow via discretely divergence-free finite element models, Int. J. numer. methods fluids, 18, 71, (1994) · Zbl 0794.76051
[24] Hyman, J.M.; Shashkov, M., The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. numer. anal., 36, 788, (1999) · Zbl 0972.65077
[25] Hall, C.A.; Cavendish, J.C.; Frey, W.H., The dual variable method for solving fluid flow difference equations on delaunary triangulations, Comput. fluids, 20, 145, (1991) · Zbl 0729.76047
[26] Ghia, U.; Ghia, K.N.; Shin, C.T., High re solutions for incompressible flow using the navier – stokes equation and multigrid methods, J. comput. phys., 48, 387, (1982) · Zbl 0511.76031
[27] Peyret, R.; Taylor, T., computational methods for fluid flow, (1983), Springer-Verlag Berlin · Zbl 0514.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.