zbMATH — the first resource for mathematics

A vortex particle method for two-dimensional compressible flow. (English) Zbl 1130.76393
Summary: A vortex particle method is developed for simulating two-dimensional, unsteady compressible flow. The method uses the Helmholtz decomposition of the velocity field to separately treat the irrotational and solenoidal portions of the flow, and the particles are allowed to change volume to conserve mass. In addition to having vorticity and dilatation properties, the particles also carry density, enthalpy, and entropy. The resulting evolution equations contain terms that are computed with techniques used in some incompressible methods. Truncation of unbounded domains via a nonreflecting boundary condition is also considered. The fast multipole method is adapted to compressible particles in order to make the method computationally efficient. The new method is applied to several problems, including sound generation by corotating vortices and generation of vorticity by baroclinic torque.

76M23 Vortex methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
76Q05 Hydro- and aero-acoustics
Full Text: DOI
[1] Abramowitz, M.; Stegun, I.A., American mathematical series, (1964), Natl. Bur. of Standards Washington
[2] Anderson, C.; Greengard, C., On vortex methods, SIAM J. numer. anal., 22, 413, (1985) · Zbl 0578.65121
[3] Anderson, C.R., A vortex method for flows with slight density variations, J. comput. phys., 61, 417, (1985) · Zbl 0576.76023
[4] Beale, J.T.; Majda, A., Vortex methods II: higher order accuracy in two and three dimensions, Math. comput., 39, 29, (1982) · Zbl 0488.76025
[5] Beale, J.T.; Majda, A., High order accurate vortex methods with explicit velocity kernels, J. comput. phys., 58, 188, (1985) · Zbl 0588.76037
[6] Chorin, A.J., Numerical study of slightly viscous flow, J. fluid mech., 57, 785, (1973)
[7] Chu, B.-T.; Kovásznay, L.S.G., Non-linear interactions in a viscous heat-conducting compressible gas, J. fluid mech., 3, 494, (1958)
[8] Cottet, G.-H., Artificial viscosity models for vortex and particle methods, J. comput. phys., 127, 299, (1996) · Zbl 0860.76065
[9] Cottet, G.-H.; Koumoutsakos, P., Vortex methods: theory and practice, (2000)
[10] Crow, S.C., Aerodynamic sound emission as a singular perturbation problem, Stud. appl. math., XLIX, 21, (1970) · Zbl 0185.54701
[11] Daeninck, G., Local refinement in Lagrangian vortex particle methods, (2000)
[12] Degond, P.; Mas-Gallic, S., The weighted particle method for convection – diffusion equations, part 1: the case of an isotropic viscosity, Math. comput., 53, 485, (1989) · Zbl 0676.65121
[13] Eldredge, J.; Colonius, T.; Leonard, A., A vortex particle method for compressible flows, 2001-2641, (2001)
[14] J. D. Eldredge, A. Leonard, and, T. Colonius, A general deterministic treatment of derivatives in particle methods, J. Comput. Phys, in press. · Zbl 1143.76550
[15] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. comput., 31, 629, (1977) · Zbl 0367.65051
[16] Epton, M.A.; Dembart, B., Multipole translation theory for the three-dimensional Laplace and Helmholtz equations, SIAM J. sci. stat. comput., 16, 865, (1995) · Zbl 0852.31006
[17] Fishelov, D., A new vortex scheme for viscous flows, J. comput. phys., 86, 211, (1990) · Zbl 0681.76036
[18] Ghoniem, A.F.; Chorin, A.J.; Oppenheim, A.K., Numerical modelling of turbulent flow in a combustion tunnel, Philos. trans. R. soc. London A, 304, 303, (1982) · Zbl 0478.76066
[19] Gingold, R.A.; Monaghan, J.J., Smoothed particle hydrodynamics: theory and application to nonspherical stars, Mon. not. R. astron. soc., 181, 375, (1977) · Zbl 0421.76032
[20] Givoli, D., Non-reflecting boundary conditions, J. comput. phys., 94, 1, (1991) · Zbl 0731.65109
[21] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. comput. phys., 73, 325, (1987) · Zbl 0629.65005
[22] Hald, O.H., Convergence of vortex methods for Euler’s equations, II, SIAM J. numer. anal., 16, 726, (1979) · Zbl 0427.76024
[23] Howe, M.S., Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute, J. fluid mech., 71, 625, (1975) · Zbl 0325.76117
[24] Knio, O.M.; Collorec, L.; Juvé, D., Numerical study of sound emission by 2D regular and chaotic vortex configurations, J. comput. phys., 116, 226, (1995) · Zbl 0827.76058
[25] Koumoutsakos, P.; Leonard, A.; Pépin, F., Boundary conditions for viscous vortex methods, J. comput. phys., 113, 52, (1994) · Zbl 0808.76072
[26] Krishnan, A.; Ghoniem, A.F., Simulation of rollup and mixing in rayleigh – taylor flow using the transport-element method, J. comput. phys., 99, 1, (1992) · Zbl 0741.76020
[27] Landau, L.D.; Lifshitz, E.M., Fluid mechanics, 6, (1959)
[28] Lele, S.K., Computational aeroacoustics: A review, (1997)
[29] Leonard, A., Vortex methods for flow simulation, J. comput. phys., 37, 289, (1980) · Zbl 0438.76009
[30] Melander, M.V.; Zabusky, N.J.; McWilliams, J.C., Symmetric vortex merger in two dimensions: causes and conditions, J. fluid mech., 195, 303, (1988) · Zbl 0653.76020
[31] Mitchell, B.E.; Lele, S.K.; Moin, P., Direct computation of the sound from a compressible co-rotating vortex pair, J. fluid mech., 285, 181, (1995) · Zbl 0848.76085
[32] Möhring, W., On vortex sound at low Mach number, J. fluid mech., 85, 685, (1978) · Zbl 0376.76058
[33] Möhring, W., Sound generation from convected vortices, (1997)
[34] Monaghan, J.J., Particle methods for hydrodynamics, Comput. phys. rep., 3, 71, (1985)
[35] Monaghan, J.J., On the problem of penetration in particle methods, J. comput. phys., 82, 1, (1989) · Zbl 0665.76124
[36] Monaghan, J.J., SPH and Riemann solvers, J. comput. phys., 136, 298, (1997) · Zbl 0893.76069
[37] Monaghan, J.J.; Gingold, R.A., Shock simulation by the particle method SPH, J. comput. phys., 52, 374, (1983) · Zbl 0572.76059
[38] E.-A. Müller and F. Obermeier, The spinning vortices as a source of sound, in Proceedings of the Conference on Fluid Dynamics of Rotor and Fan Supported Aircraft at Subsonic Speeds, AGARD CP-22 (NATO (AGARD) 1967), pp. 22.1-22.8.
[39] Pothou, K.P.; Voutsinas, S.G.; Huberson, S.G.; Knio, O.M., Application of 3-d particle method to the prediction of aerodynamic sound, European series in applied and industrial mathematics, 1, (1996), Soc. de Math. Appl. & Industr Paris · Zbl 0879.76072
[40] Powell, A., Theory of vortex sound, J. acoust. soc. am., 36, 177, (1964)
[41] T. R. Quackenbush, A. H. Boschitsch, G. S. Winckelmans, and, A. Leonard, Fast Lagrangian Analysis of Three Dimensional Unsteady Reacting Flow with Heat Release, AIAA Paper 96-0815, AIAA Press, Washington, DC, 1996.
[42] P. A. Raviart, An analysis of particle methods, in Numerical Methods in Fluid Dynamics, edited by F. Brezzi, Lecture Notes in Mathematics Springer-Verlag, New York, 1983, Vol, 1127, pp. 243-324.
[43] Sarpkaya, T., Computational methods with vortices—the 1988 freeman scholar lecture, J. fluids eng., 111, 5, (1989)
[44] Schoenberg, I.J., Cardinal spline interpolation, (1973) · Zbl 0264.41003
[45] Soteriou, M.C.; Ghoniem, A.F., On the effects of the inlet boundary condition on the mixing and burning in reacting shear flows, Combust. flame, 112, 404, (1998)
[46] Tsynkov, S.V., Numerical solution of problems on unbounded domains. A review, Appl. numer. math., 27, 405, (1998)
[47] Winckelmans, G.S.; Leonard, A., Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows, J. comput. phys., 109, 247, (1993) · Zbl 0795.76065
[48] Yates, J.E., Application of the Bernoulli enthalpy concept to the study of vortex noise and jet impingement noise, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.