×

zbMATH — the first resource for mathematics

Numerical implementation of the variational formulation for quasi-static brittle fracture. (English) Zbl 1130.74040
Summary: This paper presents the analysis and implementation of variational formulation of quasi-static brittle fracture mechanics proposed by G. A. Francfort and J.-J. Marigo [J. Mech. Phys. Solids 46, No. 8, 1319–1342 (1998; Zbl 0966.74060)]. We briefly present the model itself, and its variational approximation in the sense of \(\Gamma\)-convergence. We propose a numerical algorithm based on alternate minimizations and prove its convergence under restrictive assumptions. We establish a new necessary condition for optimality for the entire time evolution from which we derive the backtracking algorithm. We give an analysis of the backtracking algorithm on a simple problem. We present realistic numerical simulation of a traction experiment on a fiber-reinforced matrix, and of the propagation of cracks in a perforated sample under mode-I loading.

MSC:
74R10 Brittle fracture
74G65 Energy minimization in equilibrium problems in solid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] ALBERTI, G. Variational models for phase transitions, an approach via \Gamma -convergence. Calculus of Variations and Partial Differential Equations , G. Buttazzo et al. (ed.), Springer (2000), 95-114. · Zbl 0957.35017
[2] AMBROSIO, L., & TORTORELLI, V. M. Approximation of functionals depending on jumps by elliptic functionals via \Gamma -convergence. Comm. Pure Appl. Math. 43 (1990), 999-1036. · Zbl 0722.49020
[3] AMBROSIO, L., & TORTORELLI, V. M. On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6 (1992), 105-123. · Zbl 0776.49029
[4] BELLETTINI, G., & COSCIA, A. Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15 (1994), 201-224. · Zbl 0806.49002
[5] BOURDIN, B., & CHAMBOLLE, A. Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000), 609-646. · Zbl 0961.65062
[6] BOURDIN, B., FRANCFORT, G. A., & MARIGO, J.-J. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000), 797-826. · Zbl 0995.74057
[7] BOURDIN, B., FRANCFORT, G. A., & MARIGO, J.-J. The Variational Approach to Fracture (reprinted from J. Elasticity). Springer, to appear. · Zbl 1176.74018
[8] BOURDIN, B. Une méthode variationnelle en mécanique de la rupture, théorie et applications numériques . Ph.D. thesis, Université Paris Nord, Institut Galilée (1998); http://www.math.lsu. edu/\~bourdin.
[9] BOURDIN, B. Image segmentation with a finite element method. M2AN Math. Model. Numer. Anal. 33 (1999), 229-244. · Zbl 0947.65075
[10] BRAIDES, A., \Gamma -convergence for Beginners . Oxford Lecture Ser. Math. Appl. 22, Oxford Univ. Press, Oxford (2002). · Zbl 1198.49001
[11] CAMACHO, G. T., & ORTIZ, M. Computational modelling of impact damage in brittle materials. Int. J. Numer. Meth. Engrg. 33 (1996), 2899-2938. · Zbl 0929.74101
[12] CHAMBOLLE, A. An approximation result for special functions with bounded variations. J. Math. Pures Appl. 83 (2004), 929-954. · Zbl 1084.49038
[13] CHAMBOLLE, A. Addendum to “An approximation result for special functions with bounded deformation”: the n-dimensional case. J. Math. Pures Appl. 84 (2005), 137-145. · Zbl 1084.49038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.