×

Bottom tangles and universal invariants. (English) Zbl 1130.57014

Summary: A bottom tangle is a tangle in a cube consisting only of arc components, each of which has the two endpoints on the bottom line of the cube, placed next to each other. We introduce a subcategory \(B\) of the category of framed, oriented tangles, which acts on the set of bottom tangles. We give a finite set of generators of \(B\), which provides an especially convenient way to generate all the bottom tangles, and hence all the framed, oriented links, via closure. We also define a kind of “braided Hopf algebra action” on the set of bottom tangles.
Using the universal invariant of bottom tangles associated to each ribbon Hopf algebra \(H\), we define a braided functor \(J\) from \(B\) to the category Mod\(_H\) of left \(H\)-modules. The functor \(J\), together with the set of generators of \(B\), provides an algebraic method to study the range of quantum invariants of links. The braided Hopf algebra action on bottom tangles is mapped by \(J\) to the standard braided Hopf algebra structure for \(H\) in \(\text{Mod}_H\).
Several notions in knot theory, such as genus, unknotting number, ribbon knots, boundary links, local moves, etc. are given algebraic interpretations in the setting involving the category \(B\). The functor \(J\) provides a convenient way to study the relationships between these notions and quantum invariants.

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423 · Zbl 0898.57001 · doi:10.1016/0040-9383(95)93237-2
[2] J S Birman, Braids, links, and mapping class groups, Princeton University Press (1974)
[3] J S Birman, New points of view in knot theory, Bull. Amer. Math. Soc. \((\)N.S.\()\) 28 (1993) 253 · Zbl 0785.57001 · doi:10.1090/S0273-0979-1993-00389-6
[4] J S Birman, X S Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math. 111 (1993) 225 · Zbl 0812.57011 · doi:10.1007/BF01231287
[5] R D Brandt, W B R Lickorish, K C Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986) 563 · Zbl 0595.57009 · doi:10.1007/BF01388747
[6] A Bruguières, A Virelizier, Hopf diagrams and quantum invariants, Algebr. Geom. Topol. 5 (2005) 1677 · Zbl 1116.57011 · doi:10.2140/agt.2005.5.1677
[7] B E Clark, Crosscaps and knots, Internat. J. Math. Math. Sci. 1 (1978) 113 · Zbl 0386.57003 · doi:10.1155/S0161171278000149
[8] L Crane, D Yetter, On algebraic structures implicit in topological quantum field theories, J. Knot Theory Ramifications 8 (1999) 125 · Zbl 0935.57025 · doi:10.1142/S0218216599000109
[9] R H Fox, Congruence classes of knots, Osaka Math. J. 10 (1958) 37 · Zbl 0084.19204
[10] P J Freyd, D N Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989) 156 · Zbl 0679.57003 · doi:10.1016/0001-8708(89)90018-2
[11] P Freyd, D Yetter, J Hoste, W B R Lickorish, K Millett, A Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. \((\)N.S.\()\) 12 (1985) 239 · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[12] L Goeritz, Knoten und quadratische Formen, Math. Z. 36 (1933) 647 · Zbl 0006.42201 · doi:10.1007/BF01188642
[13] C M Gordon, R A Litherland, On the signature of a link, Invent. Math. 47 (1978) 53 · Zbl 0391.57004 · doi:10.1007/BF01609479
[14] M Goussarov, Finite type invariants and \(n\)-equivalence of \(3\)-manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517 · Zbl 0938.57013 · doi:10.1016/S0764-4442(00)80053-1
[15] M Goussarov, M Polyak, O Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000) 1045 · Zbl 1006.57005 · doi:10.1016/S0040-9383(99)00054-3
[16] M N Gusarov, A new form of the Conway-Jones polynomial of oriented links, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991) 4, 161 · Zbl 0747.57005
[17] M Gusarov, On \(n\)-equivalence of knots and invariants of finite degree, Adv. Soviet Math. 18, Amer. Math. Soc. (1994) 173 · Zbl 0865.57007
[18] M N Gusarov, Variations of knotted graphs. The geometric technique of \(n\)-equivalence, Algebra i Analiz 12 (2000) 79 · Zbl 0981.57006
[19] N Habegger, Milnor, Johnson, and tree level perturbative invariants, preprint
[20] K Habiro, A unified Witten-Reshetikhin-Turaev invariant of integral homology spheres, · Zbl 1144.57006 · doi:10.1007/s00222-007-0071-0
[21] K Habiro, Aru karamime no kyokusyo sousa no zoku ni tuite, dissertation, University of Tokyo (1994)
[22] K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1 · Zbl 0941.57015 · doi:10.2140/gt.2000.4.1
[23] K Habiro, On the quantum \(\mathrm sl_2\) invariants of knots and integral homology spheres, Geom. Topol. Monogr. 4 (2002) 55 · Zbl 1040.57010
[24] K Habiro, Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci. 40 (2004) 1127 · Zbl 1098.13032 · doi:10.2977/prims/1145475444
[25] K Habiro, T T Q Le, (article in preparation)
[26] M Hennings, Invariants of links and \(3\)-manifolds obtained from Hopf algebras, J. London Math. Soc. \((2)\) 54 (1996) 594 · Zbl 0882.57002 · doi:10.1112/jlms/54.3.594
[27] J A Hillman, Spanning links by nonorientable surfaces, Quart. J. Math. Oxford Ser. \((2)\) 31 (1980) 169 · Zbl 0408.57002 · doi:10.1093/qmath/31.2.169
[28] C F Ho, A polynomial invariant for knots and links - preliminary report, Abstracts Amer. Math. Soc. 6 (1985)
[29] V F R Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. \((\)N.S.\()\) 12 (1985) 103 · Zbl 0564.57006 · doi:10.1090/S0273-0979-1985-15304-2
[30] N Kamada, S Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000) 93 · Zbl 0997.57018 · doi:10.1142/S0218216500000049
[31] C Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer (1995) · Zbl 0808.17003
[32] C Kassel, V Turaev, Chord diagram invariants of tangles and graphs, Duke Math. J. 92 (1998) 497 · Zbl 0947.57010 · doi:10.1215/S0012-7094-98-09215-8
[33] L H Kauffman, Formal knot theory, Mathematical Notes 30, Princeton University Press (1983) · Zbl 0537.57002
[34] L H Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990) 417 · Zbl 0763.57004 · doi:10.2307/2001315
[35] L H Kauffman, Gauss codes, quantum groups and ribbon Hopf algebras, Rev. Math. Phys. 5 (1993) 735 · Zbl 0803.57001 · doi:10.1142/S0129055X93000231
[36] L H Kauffman, Virtual knot theory, European J. Combin. 20 (1999) 663 · Zbl 0938.57006 · doi:10.1006/eujc.1999.0314
[37] L H Kauffman, D E Radford, Invariants of \(3\)-manifolds derived from finite-dimensional Hopf algebras, J. Knot Theory Ramifications 4 (1995) 131 · Zbl 0843.57007 · doi:10.1142/S0218216595000077
[38] L Kauffman, D E Radford, Oriented quantum algebras, categories and invariants of knots and links, J. Knot Theory Ramifications 10 (2001) 1047 · Zbl 1008.57010 · doi:10.1142/S0218216501001268
[39] T Kerler, Genealogy of non-perturbative quantum-invariants of \(3\)-manifolds: the surgical family, Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 503 · Zbl 0869.57014
[40] T Kerler, Bridged links and tangle presentations of cobordism categories, Adv. Math. 141 (1999) 207 · Zbl 0937.57017 · doi:10.1006/aima.1998.1772
[41] T Kerler, Homology TQFT’s and the Alexander-Reidemeister invariant of 3-manifolds via Hopf algebras and skein theory, Canad. J. Math. 55 (2003) 766 · Zbl 1083.57038 · doi:10.4153/CJM-2003-033-5
[42] T Kerler, Towards an algebraic characterization of 3-dimensional cobordisms, Contemp. Math. 318, Amer. Math. Soc. (2003) 141 · Zbl 1168.57313
[43] T Kerler, V V Lyubashenko, Non-semisimple topological quantum field theories for 3-manifolds with corners, Lecture Notes in Mathematics 1765, Springer (2001) · Zbl 0982.57013 · doi:10.1007/b82618
[44] R Kirby, A calculus for framed links in \(S^3\), Invent. Math. 45 (1978) 35 · Zbl 0377.55001 · doi:10.1007/BF01406222
[45] R J Lawrence, A universal link invariant using quantum groups, World Sci. Publishing (1989) 55
[46] R J Lawrence, A universal link invariant, Inst. Math. Appl. Conf. Ser. New Ser. 24, Oxford Univ. Press (1990) 151
[47] T Q T Le, J Murakami, The universal Vassiliev-Kontsevich invariant for framed oriented links, Compositio Math. 102 (1996) 41 · Zbl 0851.57007
[48] H C Lee, Tangles, links and twisted quantum groups, NATO Adv. Sci. Inst. Ser. B Phys. 238, Plenum (1990) 623 · Zbl 0748.57001
[49] H C Lee, On Seifert circles and functors for tangles, Adv. Ser. Math. Phys. 16, World Sci. Publ. (1992) 581 · Zbl 0925.57003 · doi:10.1142/S0217751X9200394X
[50] H C Lee, Tangle invariants and centre of the quantum group, de Gruyter (1992) 341 · Zbl 0772.57010
[51] H C Lee, Universal tangle invariant and commutants of quantum algebras, J. Phys. A 29 (1996) 393 · Zbl 0911.57006 · doi:10.1088/0305-4470/29/2/019
[52] J Levine, Homology cylinders: an enlargement of the mapping class group, Algebr. Geom. Topol. 1 (2001) 243 · Zbl 0978.57015 · doi:10.2140/agt.2001.1.243
[53] V V Lyubashenko, Invariants of \(3\)-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172 (1995) 467 · Zbl 0844.57016 · doi:10.1007/BF02101805
[54] S Macnbsp;Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1998) · Zbl 0906.18001
[55] S Majid, Algebras and Hopf algebras in braided categories, Lecture Notes in Pure and Appl. Math. 158, Dekker (1994) 55 · Zbl 0812.18004
[56] S Majid, Foundations of quantum group theory, Cambridge University Press (1995) · Zbl 0857.17009
[57] S V Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268, 345 · Zbl 0634.57006
[58] H Murakami, Some metrics on classical knots, Math. Ann. 270 (1985) 35 · Zbl 0535.57005 · doi:10.1007/BF01455526
[59] H Murakami, Y Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989) 75 · Zbl 0646.57005 · doi:10.1007/BF01443506
[60] H Murakami, A Yasuhara, Crosscap number of a knot, Pacific J. Math. 171 (1995) 261 · Zbl 0857.57004
[61] S Naik, T Stanford, A move on diagrams that generates \(S\)-equivalence of knots, J. Knot Theory Ramifications 12 (2003) 717 · Zbl 1051.57010 · doi:10.1142/S0218216503002639
[62] Y Nakanishi, On Fox’s congruence classes of knots. II, Osaka J. Math. 27 (1990) 207 · Zbl 0705.57006
[63] Y Nakanishi, From a view of localized link theory, de Gruyter (1992) 173 · Zbl 0774.57009
[64] Y Nakanishi, S Suzuki, On Fox’s congruence classes of knots, Osaka J. Math. 24 (1987) 217 · Zbl 0654.57003
[65] T Ohtsuki, Colored ribbon Hopf algebras and universal invariants of framed links, J. Knot Theory Ramifications 2 (1993) 211 · Zbl 0798.57006 · doi:10.1142/S0218216593000131
[66] T Ohtsuki, Invariants of \(3\)-manifolds derived from universal invariants of framed links, Math. Proc. Cambridge Philos. Soc. 117 (1995) 259 · Zbl 0859.57018 · doi:10.1017/S0305004100073102
[67] T Ohtsuki, Problems on invariants of knots and 3-manifolds, Geom. Topol. Monogr. 4 (2002) 377 · Zbl 1163.57302 · doi:10.2140/gtm.2002.4.377
[68] J H Przytycki, \(t_k\) moves on links, Contemp. Math. 78, Amer. Math. Soc. (1988) 615 · Zbl 0665.57007
[69] J H Przytycki, Skein modules of \(3\)-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91 · Zbl 0762.57013
[70] J H Przytycki, Skein module deformations of elementary moves on links, Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 313 · Zbl 1163.57300 · doi:10.2140/gtm.2002.4.313
[71] J H Przytycki, P Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988) 115 · Zbl 0655.57002
[72] N Y Reshetikhin, Quasitriangular Hopf algebras and invariants of links, Algebra i Analiz 1 (1989) 169 · Zbl 0715.17016
[73] N Y Reshetikhin, M A Semenov-Tian-Shansky, Quantum \(R\)-matrices and factorization problems, J. Geom. Phys. 5 (1988) · Zbl 0711.17008 · doi:10.1016/0393-0440(88)90018-6
[74] N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1 · Zbl 0768.57003 · doi:10.1007/BF02096491
[75] T Sakai, A condition for a \(3\)-manifold to be a knot exterior, World Sci. Publishing (1997) 465 · Zbl 0967.57012
[76] T Sakai, Wirtinger presentations and the Kauffman bracket, Kobe J. Math. 17 (2000) 83 · Zbl 1030.57015
[77] S F Sawin, Invariants of Spin three-manifolds from Chern-Simons theory and finite-dimensional Hopf algebras, Adv. Math. 165 (2002) 35 · Zbl 0994.57011 · doi:10.1006/aima.2000.1935
[78] M C Shum, Tortile tensor categories, J. Pure Appl. Algebra 93 (1994) 57 · Zbl 0803.18004 · doi:10.1016/0022-4049(92)00039-T
[79] K Taniyama, A Yasuhara, Band description of knots and Vassiliev invariants, Math. Proc. Cambridge Philos. Soc. 133 (2002) 325 · Zbl 1038.57004 · doi:10.1017/S0305004102006138
[80] V G Turaev, Operator invariants of tangles, and \(R\)-matrices, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 1073, 1135 · Zbl 0707.57003
[81] V G Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter & Co. (1994) · Zbl 0812.57003
[82] V A Vassiliev, Cohomology of knot spaces, Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 23 · Zbl 1015.57003
[83] A Virelizier, Kirby elements and quantum invariants, Proc. London Math. Soc. 93 (2006) 474 · Zbl 1114.57016 · doi:10.1112/S0024611506015905
[84] D N Yetter, Markov algebras, Contemp. Math. 78, Amer. Math. Soc. (1988) 705 · Zbl 0665.57004
[85] D Yetter, Portrait of the handle as a Hopf algebra, Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 481 · Zbl 0873.57016
[86] D N Yetter, Functorial knot theory, Series on Knots and Everything 26, World Scientific Publishing Co. (2001) · Zbl 0977.57005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.