×

zbMATH — the first resource for mathematics

Thin film flow of non-Newtonian fluids on a moving belt. (English) Zbl 1129.76009
Summary: We consider the thin film flow of two non-Newtonian fluids namely, a Sisko fluid and an Oldroyd 6-constant fluid on a vertical moving belt. The nonlinear equations governing the flow problems are analyzed using homotopy perturbation method due to He. Explicit expressions for velocity field are obtained and graphically sketched. We also calculate the volume flux and average velocity.

MSC:
76A20 Thin fluid films
76A05 Non-Newtonian fluids
76A10 Viscoelastic fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] El-Shahed, M., Application of he’s homotopy perturbation method to volterra’s integro-differential equation, Int J nonlinear sci numer simulat, 6, 2, 163-168, (2005) · Zbl 1401.65150
[2] He, J.H., Newton-like method for solving algebraic equations, Commun nonlinear sci numer simulat, 3, 2, 106-109, (1998) · Zbl 0918.65034
[3] He, J.H., Homotopy perturbation technique, Comput methods appl mech eng., 178, 3/4 3(2), 257-262, (1999) · Zbl 0956.70017
[4] He, J.H., A coupling method of homotopy and perturbation technique for nonlinear problems, Int J nonlinear mech, 35, 1, 527-539, (2000)
[5] He, J.H., Homotopy perturbation method a new nonlinear analytic technique, Appl math comput, 135, 73-79, (2003) · Zbl 1030.34013
[6] He, J.H., Comparison of homotopy perturbation and homotopy perturbation and homotopy analysis method, Appl math comput, 156, 359-527, (2004) · Zbl 1062.65074
[7] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Int J nonlinear sci numer simulat, 6, 2, 207-208, (2005) · Zbl 1401.65085
[8] He, J.H., An approximation sol. technique depending upon an artificial parameter, Commun nonlinear sci numer simulat, 3, 2, 92-97, (1998)
[9] He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos, solitons & fractals, 26, 3, 695-700, (2005) · Zbl 1072.35502
[10] He, J.H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl math comput, 151, 1, 287-292, (2004) · Zbl 1039.65052
[11] He, J.H., Asymptotology by homotopy perturbation method, Appl math comput, 156, 3, 591-596, (2004), 15 September · Zbl 1061.65040
[12] He, J.H., Homotopy perturbation method for solving boundary value problems, Phys lett A, 350, 1-2, 87-88, (2006) · Zbl 1195.65207
[13] Cveticanin L. Homotopy perturbation method for pure nonlinear differential equation. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.08.180. · Zbl 1142.65418
[14] Abbasbandy S. Application of He’s homotopy perturbation method to functional integral equations. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.10.069. · Zbl 1139.65085
[15] Abbasbandy S. A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.10.071.
[16] Abbasbandy S. Application of He’s homotopy perturbation method for Laplace transform, Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.08.178. · Zbl 1142.65417
[17] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Thin film flow of a third grade fluid on a moving belt by he’s homotopy perturbation method, Int J nonlinear sci numer simulat, 7, 1, 7-14, (2006) · Zbl 1187.76622
[18] Siddiqui, A.M.; Ahmed, M.; Ghori, Q.K., Couette and Poiseuille flows for non Newtonian fluids, Int J non-linear sci numer simulat, 7, 1, 15-26, (2006) · Zbl 1401.76018
[19] Sisko, A.W., The flow of lubrication greases, Ind eng chem, 50, 1789-1792, (1958)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.