×

zbMATH — the first resource for mathematics

Multistability, basin boundary structure, and chaotic behavior in a suspension bridge model. (English) Zbl 1129.74318

MSC:
74H45 Vibrations in dynamical problems in solid mechanics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N15 Dynamical systems in solid mechanics
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
74H50 Random vibrations in dynamical problems in solid mechanics
Software:
ODEPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.166039 · Zbl 1055.34503 · doi:10.1063/1.166039
[2] Amann O. H., The Failure of the Tacoma Narrows Bridge (1941)
[3] DOI: 10.1119/1.16590 · doi:10.1119/1.16590
[4] Blazejczyk-Okulewska B., Chaotic Mechanics in Systems with Friction and Impacts (1999) · Zbl 0933.70002 · doi:10.1142/3982
[5] DOI: 10.1016/S0960-0779(99)00158-7 · Zbl 0955.70506 · doi:10.1016/S0960-0779(99)00158-7
[6] Blevins R. D., Flow-Induced Vibration (1997) · Zbl 0385.73001
[7] DOI: 10.1016/S0960-0779(00)00155-7 · Zbl 0984.65134 · doi:10.1016/S0960-0779(00)00155-7
[8] DOI: 10.1103/PhysRevE.50.4427 · doi:10.1103/PhysRevE.50.4427
[9] DOI: 10.1016/0370-1573(79)90023-1 · doi:10.1016/0370-1573(79)90023-1
[10] DOI: 10.1016/S0167-2789(01)00349-9 · Zbl 1067.37063 · doi:10.1016/S0167-2789(01)00349-9
[11] DOI: 10.1080/02681119608806215 · Zbl 0855.34041 · doi:10.1080/02681119608806215
[12] DOI: 10.1080/026811100281929 · Zbl 0952.34042 · doi:10.1080/026811100281929
[13] DOI: 10.1103/PhysRevE.54.71 · doi:10.1103/PhysRevE.54.71
[14] DOI: 10.1063/1.166259 · Zbl 0933.37032 · doi:10.1063/1.166259
[15] DOI: 10.1016/S0960-0779(97)00058-1 · Zbl 0963.70556 · doi:10.1016/S0960-0779(97)00058-1
[16] DOI: 10.1103/PhysRevLett.48.1507 · doi:10.1103/PhysRevLett.48.1507
[17] DOI: 10.1016/0167-2789(83)90126-4 · Zbl 0561.58029 · doi:10.1016/0167-2789(83)90126-4
[18] DOI: 10.1103/PhysRevA.37.1711 · doi:10.1103/PhysRevA.37.1711
[19] DOI: 10.1007/978-1-4612-1140-2 · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[20] Hartog D., Advanced Strength of Materials (1987)
[21] DOI: 10.1016/S0960-0779(99)00164-2 · Zbl 1162.74387 · doi:10.1016/S0960-0779(99)00164-2
[22] Hindmarch A. C., ODEPACK: a systematized collection of ODE solvers, in: Scientific Computing (1983)
[23] DOI: 10.1016/S0960-0779(00)00016-3 · Zbl 0955.70510 · doi:10.1016/S0960-0779(00)00016-3
[24] DOI: 10.1007/978-3-642-57143-5 · doi:10.1007/978-3-642-57143-5
[25] DOI: 10.1115/1.2897218 · Zbl 0850.70235 · doi:10.1115/1.2897218
[26] DOI: 10.1103/PhysRevE.59.5253 · doi:10.1103/PhysRevE.59.5253
[27] Lazer A. C., SIAM Rev. 58 pp 537–
[28] Lichtenberg A. J., Regular and Chaotic Dynamics (1997) · Zbl 0896.01002
[29] Nayfeh A. H., Nonlinear Oscillations (1979)
[30] DOI: 10.1103/PhysRevE.59.4062 · doi:10.1103/PhysRevE.59.4062
[31] McDonald S. W., Phys. Lett. A 99 pp 415–
[32] DOI: 10.1016/0167-2789(85)90001-6 · Zbl 0588.58033 · doi:10.1016/0167-2789(85)90001-6
[33] Nordmark A. B., J. Sound Vibr. 2 pp 279–
[34] DOI: 10.1103/PhysRevE.51.4076 · doi:10.1103/PhysRevE.51.4076
[35] DOI: 10.1098/rsta.1990.0102 · Zbl 0709.70019 · doi:10.1098/rsta.1990.0102
[36] DOI: 10.1016/0167-2789(92)90107-X · Zbl 1194.37140 · doi:10.1016/0167-2789(92)90107-X
[37] DOI: 10.1103/PhysRevA.32.2994 · doi:10.1103/PhysRevA.32.2994
[38] DOI: 10.1016/0022-460X(83)90407-8 · Zbl 0561.70022 · doi:10.1016/0022-460X(83)90407-8
[39] Thomspson J. M. T., I.M.A. J. Appl. Math. 31 pp 207–
[40] DOI: 10.1016/0022-460X(87)90474-3 · Zbl 1235.70054 · doi:10.1016/0022-460X(87)90474-3
[41] DOI: 10.1016/S0960-0779(00)00032-1 · Zbl 0966.70017 · doi:10.1016/S0960-0779(00)00032-1
[42] DOI: 10.1142/9789812796301 · doi:10.1142/9789812796301
[43] Wiggins S., Introduction to Applied Nonlinear Dynamics and Chaos (1997)
[44] DOI: 10.1007/BF01857582 · doi:10.1007/BF01857582
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.