zbMATH — the first resource for mathematics

Generalized problem of two and four Newtonian centers. (English) Zbl 1129.70010
Summary: We consider integrable spherical analog of the Darboux potential, which appear in the problem (and its generalizations) of the planar motion of a particle in the field of two and four fixed Newtonian centers. The obtained results can be useful when constructing a theory of motion of satellites in the field of an oblate spheroid in constant curvature spaces.

70F10 \(n\)-body problems
70F15 Celestial mechanics
Full Text: DOI
[4] Borisov, A. V. and Mamaev, I. S.: 1999, Poisson structures and Lie algebras in Hamiltonian mechanics, Izhevsk, SPC ’RCD’ (In Russian). · Zbl 1010.70002
[5] Borisov, A. V. and Mamaev, I. S.: 2001, Rigid Body Dynamics, Izhevsk, SPC ’RCD’ (In Russian).
[7] Charlier, C. L.: 1927, Die Mechanik des Himmels, Berlin, Walter de Gruyter & Co. · JFM 53.0892.01
[15] Jacobi, C. J.: 1884, Vorlesungen über Dynamik, Aufl. 2, Berlin, G. Reimer.
[18] Kozlov V.V. (1994). ’On dynamics in constant curvature spaces’. Vestnik MGU, Ser. Math. Mech. 28–35. · Zbl 1066.83511
[20] Liebmann H. (1905). Nichteuklidische Geometrie. Leipzig, G. J. Göschen’sche Verlagshandlung. · JFM 36.0520.01
[27] Whittaker, E. T.: 1959, Analytical Dynamics, Cambridge University Press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.