×

Five-dimensional massive vector fields and radion stabilization. (English) Zbl 1128.81323

Summary: We provide a description of the five-dimensional Higgs mechanism in supersymmetric gauge theories compactified on the orbifold \(S^1 /\mathbb Z_2\) by means of the \(\mathcal N=1\) superfield formalism. Goldstone bosons absorbed by vector multiplets can come either from hypermultiplets or from gauge multiplets of opposite parity (Hosotani mechanism). Supersymmetry is broken by the Scherk-Schwarz mechanism. In the presence of massive hypermultiplets and gauge multiplets, with different supersymmetric masses, the radion can be stabilized with positive (de Sitter) vacuum energy. The masses of vector and hypermultiplets can be fine-tuned to have zero (Minkowski) vacuum energy.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Luty, M. A.; Okada, N., JHEP, 0304, 050 (2003)
[2] Fayet, P., Nucl. Phys. B, 149, 137 (1979)
[3] Hosotani, Y., Ann. Phys., 190, 233 (1989)
[4] Marcus, N.; Sagnotti, A.; Siegel, W., Nucl. Phys. B, 224, 159 (1983)
[5] Arkani-Hamed, N.; Gregoire, T.; Wacker, J., JHEP, 0203, 055 (2002)
[6] Marti, D.; Pomarol, A., Phys. Rev. D, 64, 105025 (2001)
[7] von Gersdorff, G.; Quiros, M., Phys. Rev. D, 68, 105002 (2003)
[8] Dudas, E.; Gherghetta, T.; Groot Nibbelink, S., Phys. Rev. D, 70, 086012 (2004)
[9] Ogievetskii, V. I.; Polubarinov, I. V., JETP, 14, 179 (1962)
[10] Quirós, M., New ideas in symmetry breaking, For a review see e.g. · Zbl 1096.81019
[11] Fayet, P., Phys. Lett. B, 159, 121 (1985)
[12] Antoniadis, I.; Quiros, M., Phys. Lett. B, 416, 327 (1998)
[13] Barbieri, R.; Hall, L. J.; Nomura, Y., Phys. Rev. D, 63, 105007 (2001)
[14] Appelquist, T.; Chodos, A., Phys. Rev. D, 28, 772 (1983)
[15] Coleman, S. R.; Weinberg, E., Phys. Rev. D, 7, 1888 (1973)
[16] Delgado, A.; Pomarol, A.; Quiros, M., Phys. Rev. D, 60, 095008 (1999)
[17] von Gersdorff, G.; Pilo, L.; Quiros, M.; Rayner, D. A.J.; Riotto, A., Phys. Lett. B, 580, 93 (2004)
[18] von Gersdorff, G.; Quiros, M.; Riotto, A., Nucl. Phys. B, 689, 76 (2004)
[19] Cremmer, E.; Julia, B.; Scherk, J.; Ferrara, S.; Girardello, L.; van Nieuwenhuizen, P., Nucl. Phys. B, 147, 105 (1979)
[20] Ferrara, S.; Kounnas, C.; Porrati, M.; Zwirner, F., Nucl. Phys. B, 318, 75 (1989)
[21] Bagger, J. A.; Feruglio, F.; Zwirner, F., Phys. Rev. Lett., 88, 101601 (2002)
[22] Casas, J. A.; Lalak, Z.; Munoz, C.; Ross, G. G., Nucl. Phys. B, 347, 243 (1990)
[23] Burgess, C. P.; Kallosh, R.; Quevedo, F., JHEP, 0310, 056 (2003)
[24] Watson, S., Phys. Rev. D, 70, 066005 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.