zbMATH — the first resource for mathematics

A tailored solver for bifurcation analysis of ocean-climate models. (English) Zbl 1127.86002
Summary: We present a new linear system solver for use in a fully-implicit ocean model. The new solver allows to perform bifurcation analysis of relatively high-resolution primitive-equation ocean-climate models. It is based on a block-ILU approach and takes special advantage of the mathematical structure of the governing equations. In implicit models Jacobian matrices have to be constructed. Analytical construction is hard for complicated but more realistic representations of mixing. This is overcome by evaluating the Jacobian in part numerically. The performance of the new implicit ocean model is demonstrated using (i) a high-resolution model of the wind-forced double-gyre flow problem in a (relatively small) midlatitude spherical basin, and (ii) a medium-resolution model of thermohaline and wind-driven flows in an Atlantic size single-hemispheric basin.

86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
65P30 Numerical bifurcation problems
Full Text: DOI
[1] Benzi, M.; Golub, G.H.; Liesen, J., Numerical solution of saddle point problems, Acta numer., 14, 1-137, (2005) · Zbl 1115.65034
[2] Botta, E.F.F.; Wubs, F.W., Matrix renumbering ILU: an effective algebraic multilevel ILU preconditioner for sparse matrices, SIAM J. matrix anal. appl., 20, 4, 1007-1026, (1999), (electronic). Sparse and structured matrices and their applications (Coeur d’Alene, ID, 1996) · Zbl 0937.65057
[3] Bryan, F.O., High-latitude salinity effects and interhemispheric thermohaline circulations, Nature, 323, 301-304, (1986)
[4] Chen, F.; Ghil, M., Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes, J. phys. oceanogr., 22, 161-167, (1995)
[5] Coleman, T.; Garbow, B.S.; Moré, J.J., Software for estimating sparse Jacobian matrices, ACM trans. math. software, 10, 329-345, (1984) · Zbl 0548.65006
[6] Danabasoglu, G.; McWilliams, J.C., Sensitivity of the global Ocean circulation to parameterizations of mesoscale tracer transports, J. phys. oceanogr., 8, 2967-2987, (1995)
[7] de Niet, A.; Wubs, F., Two saddle point preconditioners for fluid flows, Int. J. numer. method fluid, 54, 355-377, (2007) · Zbl 1111.76033
[8] Dijkstra, H.A., Nonlinear physical oceanography: A dynamical systems approach to the large scale Ocean circulation and el niño, (2005), Springer Dordrecht, The Netherlands
[9] Dijkstra, H.A.; Katsman, C.A., Temporal variability of the wind-driven quasi-geostrophic double gyre Ocean circulation: basic bifurcation diagrams, Geophys. astrophys. fluid dynam., 85, 195-232, (1997)
[10] Dijkstra, H.A.; Öksüzo˘glu, H.; Wubs, F.W.; Botta, E.F.F., A fully implicit model of the three-dimensional thermohaline Ocean circulation, J. comput. phys., 173, 685-715, (2001) · Zbl 1051.86004
[11] Dijkstra, H.A.; Te Raa, L.A.; Schmeits, M.; Gerrits, J., On the physics of the atlantic multidecadal oscillation, Ocean dynam., 56, 36-50, (2006)
[12] Gent, P.R.; Willebrand, J.; McDougall, T.J.; McWilliams, J.C., Parameterizing eddy-induced tracer transports in Ocean circulation models, J. phys. oceanogr., 25, 463-474, (1995)
[13] Griffies, S.M., Fundamentals of Ocean-climate models, (2004), Princeton University Press Princeton, USA · Zbl 1065.86002
[14] Gruais, I.; Rittemard, N.; Dijkstra, H.A., A priori estimations of a global homotopy residue continuation method, Nonlinear funct. anal. optim., 4-5, 507-521, (2005) · Zbl 1081.65120
[15] Huang, R.X., Mixing and energetics of the oceanic thermohaline circulation, J. phys. oceanogr., 29, 727-746, (1999)
[16] Huck, T.; Colin de Verdiére, A.; Weaver, A.J., Interdecadal variability of the thermohaline circulation in box-Ocean models forced by fixed surface fluxes, J. phys. oceanogr., 29, 865892, (1999)
[17] Huck, T.; Vallis, G.; Colin de Verdiére, A., On the robustness of interdecadal oscillations of the thermohaline circulation, J. climate, 14, 940-963, (2001)
[18] Jiang, S.; Jin, F.-F.; Ghil, M., Multiple equilibria and aperiodic solutions in a wind-driven double-gyre, shallow-water model, J. phys. oceanogr., 25, 764-786, (1995)
[19] Keller, H.B., Numerical solution of bifurcation and nonlinear eigenvalue problems, () · Zbl 0581.65043
[20] Meacham, S.P., Low frequency variability of the wind-driven circulation, J. phys. oceanogr., 30, 269-293, (2000)
[21] Nadiga, B.; Taylor, M.; Lorenz, J., Ocean modelling for climate studies: eliminating short time scales in long-term, high-resolution studies of Ocean circulation, Math. comp. model., 44, 870-886, (2006) · Zbl 1132.86310
[22] Nadiga, B.T.; Luce, B., Global bifurcation of shil nikov type in a double-gyre model, J. phys. oceanogr., 31, 2669-2690, (2001)
[23] Nauw, J.; Dijkstra, H.A., The origin of low-frequency variability of double-gyre wind-driven flows, J. mar. res., 59, 567-597, (2001)
[24] Nauw, J.; Dijkstra, H.A.; Chassignet, E., Frictionally induced asymmetries in wind-driven flows, J. phys. oceanogr., 34, 2057-2072, (2004)
[25] Neelin, J.D.; Battisti, D.S.; Hirst, A.C.; Jin, F.-F.; Wakata, Y.; Yamagata, T.; Zebiak, S.E., ENSO theory, J. geophys. res., 103, 14261-14290, (1998)
[26] Pedlosky, J., Geophysical fluid dynamics, (1987), Springer-Verlag New York · Zbl 0713.76005
[27] Saad, Y., A flexible inner – outer preconditioned GMRES algorithm, SIAM J. sci. comput., 14, 2, 461-469, (1993) · Zbl 0780.65022
[28] Saad, Y.; Schultz, M., A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. stat. comput., 7, 856-869, (1986) · Zbl 0599.65018
[29] Schmeits, M.J.; Dijkstra, H.A., Bimodality of the kuroshio and the gulf stream, J. phys. oceanogr., 31, 2971-2985, (2001)
[30] Siegel, A.; Weiss, J.B.; Toomre, J.; McWilliams, J.C.; Berloff, P.; Yavneh, I., Eddies and coherent vortices in Ocean basin dynamics, Geophys. res. lett., 28, 3183-3186, (2001)
[31] Simonnet, E.; Ghil, M.; Ide, K.; Temam, R.; Wang, S., Low-frequency variability in shallow-water models of the wind-driven Ocean circulation. part I: steady-state solutions, J. phys. oceanogr., 33, 712-728, (2003)
[32] Simonnet, E.; Ghil, M.; Ide, K.; Temam, R.; Wang, S., Low-frequency variability in shallow-water models of the wind-driven Ocean circulation. part II: time dependent solutions, J. phys. oceanogr., 33, 729-752, (2003)
[33] Simonnet, E.; Ghil, M.; Dijkstra, H.A., Homoclinic bifurcations of barotropic QG double-gyre flows, J. mar. res., 63, 931-956, (2005)
[34] Speich, S.; Dijkstra, H.A.; Ghil, M., Successive bifurcations of a shallow-water model with applications to the wind driven circulation, Nonlinear proc. geophys., 2, 241-268, (1995)
[35] Te Raa, L.A.; Dijkstra, H.A., Instability of the thermohaline Ocean circulation on interdecadal time scales, J. phys. oceanogr., 32, 138-160, (2002)
[36] Thorpe, S.A., The turbulent Ocean, (2005), Cambridge University Press UK, 437pp
[37] K.E. Trenberth, J.G. Olson, W.G. Large, A global ocean wind stress climatology based on ECMWF analyses, Technical Report, National Center for Atmospheric Research, Boulder, CO, USA, 1989.
[38] Weijer, W.; Dijkstra, H.A.; Oksuzoglu, H.; Wubs, F.W.; deNiet, A.C., A fully-implicit model of the global Ocean circulation, J. comp. phys., 192, 452-470, (2003) · Zbl 1032.76557
[39] Wunsch, C.; Ferrari, R., Vertical mixing, energy and the general circulation of the oceans, Annu. rev. fluid mech., 36, 281-314, (2004) · Zbl 1125.86313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.