×

zbMATH — the first resource for mathematics

Finite volume approximation for degenerate drift-diffusion system in several space dimensions. (English) Zbl 1127.65319

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35M10 PDEs of mixed type
35K45 Initial value problems for second-order parabolic systems
35J70 Degenerate elliptic equations
82D37 Statistical mechanical studies of semiconductors
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1108/eb010051 · Zbl 0687.65113 · doi:10.1108/eb010051
[2] F. Arimburgo, C. Baiocchi and L. D. Marini, Nonlinear Kinetic Theory and Mathematical Aspects of Hyperbolic Systems (Rapallo 1992) (World Scientific, 1992) pp. 1–10.
[3] da Veiga H. Beirão, Differential Integral Equations 9 pp 729– · Zbl 0843.35080
[4] Brezis H., Analyse Fonctionnelle, Théorie et Applications (1983)
[5] Brezzi F., C. R. Acad. Sci. Paris Sér. I Math. 305 pp 599–
[6] DOI: 10.1016/0045-7825(89)90044-3 · Zbl 0698.76125 · doi:10.1016/0045-7825(89)90044-3
[7] DOI: 10.1137/0726078 · Zbl 0686.65088 · doi:10.1137/0726078
[8] DOI: 10.1051/m2an:2003028 · Zbl 1032.82038 · doi:10.1051/m2an:2003028
[9] DOI: 10.1093/imanum/23.1.81 · Zbl 1018.65109 · doi:10.1093/imanum/23.1.81
[10] DOI: 10.1137/0731056 · Zbl 0804.65128 · doi:10.1137/0731056
[11] DOI: 10.1007/s002110050134 · Zbl 0830.65116 · doi:10.1007/s002110050134
[12] DOI: 10.1090/S0025-5718-1992-1145661-0 · Zbl 0768.65071 · doi:10.1090/S0025-5718-1992-1145661-0
[13] DOI: 10.1090/S0025-5718-1994-1226812-8 · doi:10.1090/S0025-5718-1994-1226812-8
[14] R. Eymard, T. Gallouët and R. Herbin, Handbook of Numerical Analysis, Finite volume methods VII (North-Holland, 2000) pp. 713–1020.
[15] DOI: 10.1007/s002110100342 · Zbl 1005.65099 · doi:10.1007/s002110100342
[16] DOI: 10.1006/jdeq.1995.1172 · Zbl 0845.35050 · doi:10.1006/jdeq.1995.1172
[17] DOI: 10.1142/S021820259400008X · Zbl 0801.35133 · doi:10.1142/S021820259400008X
[18] DOI: 10.1108/eb051718 · doi:10.1108/eb051718
[19] DOI: 10.1142/S0218202594000388 · Zbl 0820.35128 · doi:10.1142/S0218202594000388
[20] DOI: 10.1002/zamm.19950751016 · Zbl 0866.35056 · doi:10.1002/zamm.19950751016
[21] DOI: 10.1002/mana.3211850108 · Zbl 1157.35406 · doi:10.1002/mana.3211850108
[22] DOI: 10.1142/S0218202597000475 · Zbl 0907.35075 · doi:10.1142/S0218202597000475
[23] Lions J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (1969)
[24] DOI: 10.1007/978-3-7091-6961-2 · doi:10.1007/978-3-7091-6961-2
[25] DOI: 10.1002/(SICI)1098-2426(199705)13:3<215::AID-NUM1>3.0.CO;2-Q · Zbl 0890.65132 · doi:10.1002/(SICI)1098-2426(199705)13:3<215::AID-NUM1>3.0.CO;2-Q
[26] Scharfetter D. L., IEEE Trans. Electron. Dev. 16 pp 64– · doi:10.1109/T-ED.1969.16566
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.