×

zbMATH — the first resource for mathematics

A perfectly matched layer approach to the nonlinear Schrödinger wave equations. (English) Zbl 1127.65078
Summary: Absorbing boundary conditions (ABCs) are generally required for simulating waves in unbounded domains. As one of those approaches for designing ABCs, perfectly matched layer (PML) has achieved great success for both linear and nonlinear wave equations. In this paper we apply PML to the nonlinear Schrödinger wave equations. The idea involved is stimulated by the good performance of PML for the linear Schrödinger equation with constant potentials, together with the time-transverse invariant property held by the nonlinear Schrödinger wave equations. Numerical tests demonstrate the effectiveness of our PML approach for both nonlinear Schrödinger equations and some Schrödinger-coupled systems in each spatial dimension.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdallah, N.B.; Méhats, F., On a vlasov – schrödinger – poisson model, Comm. partial differential equations, 29, 173-206, (2004) · Zbl 1063.35010
[2] Alonso-Mallo, I.; Reguera, N., Discrete absorbing boundary conditions for Schrödinger-type equations, Practical implementation math. comp., 73, 245, 127-142, (2003) · Zbl 1045.81015
[3] Antoine, X.; Besse, C., Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation, J. comput. phys., 181, 1, 157-175, (2003) · Zbl 1037.65097
[4] Antoine, X.; Besse, C.; Descombes, S., Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations, SIAM J. numer. anal., 43, 6, 2272-2293, (2006) · Zbl 1109.35102
[5] Antoine, X.; Besse, C.; Mouysset, V., Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions, Math. comp., 248, 1779-1799, (2004) · Zbl 1053.65072
[6] Appelö, D.; Hagstrom, T.; Kreiss, G., Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability, SIAM J. appl. math., 67, 1, 1-23, (2006) · Zbl 1110.35042
[7] Arnold, A., Self-consistent relaxation-time models in quantum mechanics, Comm. PDE, 21, 473-506, (1996) · Zbl 0849.35113
[8] Arnold, A.; Ehrhardt, M., Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics, J. comput. phys., 145, 611-638, (1998) · Zbl 0915.76081
[9] Arnold, A.; Ehrhardt, M.; Sofronov, I., Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability, Comm. math. sci., 1, 3, 501-556, (2003) · Zbl 1085.65513
[10] Bécache, E.; Petropoulos, P.G.; Gedney, S.D., On the long-time behaviour of unsplit perfectly matched layers, IEEE trans. antennas propagat., 52, 5, 1335-1342, (2004) · Zbl 1368.78159
[11] Bao, W.; Jin, S.; Markowich, P.A., On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. comput. phys., 175, 487-524, (2002) · Zbl 1006.65112
[12] Bao, W.; Jin, Shi; Markowich, P.A., Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes, SIAM J. sci. comp., 25, 27-64, (2003), (Electronic) · Zbl 1038.65099
[13] Baskakov, V.A.; Popov, A.V., Implementation of transparent boundaries for the numerical solution of the Schrödinger equation, Wave motion, 14, 123-128, (1991) · Zbl 1159.78349
[14] Bérenger, J.P., A perfectly matched layer for the absorption of electromagnetic waves, J. comput. phys., 114, 185-200, (1994) · Zbl 0814.65129
[15] Bermúdez, A.; Hervella-Nieto, L.; Prieto, A.; Rodrǵuez, R., An exact bounded PML for the Helmholtz equation, C.R. acad. sci. Paris. serie I, 339, 803-808, (2004) · Zbl 1142.65441
[16] Chew, W.; Weedon, W., A 3D perfectly matched medium from modified maxwell’s equations with stretched coordinates, Microwave optical technol. lett., 7, 599-604, (1994)
[17] Collino, F., Perfectly matched absorbing layers for the paraxial equations, J. comp. phys, 131, 164-180, (1997) · Zbl 0866.73013
[18] Collino, F.; Monk, P., The perfectly matched layer in curvilinear coordinates, SIAM J. sci. comput., 19, 2061-2090, (1998) · Zbl 0940.78011
[19] Davydov, A.S., Solitons in molecular systems, Physica scripta, 20, 387-394, (1979) · Zbl 1063.81686
[20] Deuflhard, P.; Schmidt, F., Discrete transparent boundary conditions for the numerical solution of fresnel’s equation, Comput. math. appl., 29, 9, 53-76, (1995) · Zbl 0821.65078
[21] Fevens, T.; Jiang, H., Absorbing boundary conditions for the Schrödinger equation, SIAM J. sci. comput., 21, 255-282, (1999) · Zbl 0938.35013
[22] Friese, T.; Schmidt, F.; Yevick, D., A comparison of transparent boundary conditions for the fresnel equation, J. comput. phys., 168, 433-444, (2001) · Zbl 0990.65099
[23] Fokas, A.S., The generalized Dirichlet-to-Neumann map for certain nonlinear evolution pdes, Comm. pure appl. math., 58, 5, 639-670, (2005) · Zbl 1092.35102
[24] Givoli, D., Numerical methods for problems in infinite domains, (1992), Elsevier Amsterdam · Zbl 0788.76001
[25] Givoli, D., High-order local non-reflecting boundary conditions: a review, Wave motion, 39, 319-326, (2004) · Zbl 1163.74356
[26] Guddati, M.N.; Lim, K.W., Continued fraction absorbing boundary conditions for convex polygonal domains, Inter. J. numer. methods eng., 66, 949-977, (2006) · Zbl 1110.74850
[27] Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves, Acta numer, 8, 47-106, (1999) · Zbl 0940.65108
[28] Hagstrom, T., New results on absorbing layers and radiation boundary conditions, (), 1-42 · Zbl 1059.78040
[29] Han, H.D.; Huang, Z.Y., Exact artificial boundary conditions for Schrödinger equation in R^{2}, Comm. math. sci., 2, 1, 79-94, (2004) · Zbl 1089.35524
[30] Han, H.D.; Wu, X.N.; Xu, Z.L., Artificial boundary method for burgers’ equation using nonlinear boundary conditions, J. comput. math., 24, 3, 295-304, (2006) · Zbl 1096.65085
[31] Hellums, J.R.; Frensley, W.R., Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation, Phys. rev. B, 49, 2904-2906, (1994)
[32] Higdon, R., Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. comp., 47, 437-459, (1986) · Zbl 0609.35052
[33] Higdon, R., Numerical absorbing boundary conditions for the wave equation, Math. comp., 49, 65-90, (1987) · Zbl 0654.65083
[34] F.Q. Hu, On the construction of PML absorbing boundary condition for the nonlinear Euler equations, AIAA paper 2006-0798 (2006).
[35] Jiang, S.; Greengard, L., Fast evaluation of non-reflecting boundary conditions for the Schrödinger equation in one dimension, Comput. math. appl., 47, 955-966, (2004) · Zbl 1058.35012
[36] Li, H.L.; Lin, C.K., Semiclassical limit and well-posedness of nonlinear schrodinger – poisson, Electronic J. diff. eqs., 93, 1-17, (2003) · Zbl 1055.35111
[37] Lubich, C.; Schädle, A., Fast convolution for non-reflecting boundary conditions, SIAM J. sci. comput., 24, 161-182, (2002) · Zbl 1013.65113
[38] Markowich, P.A.; Ringhofer, C.; Schmeiser, C., Semi-conductor equations, (1990), Spring-Verlag Wien, NY
[39] B. Mayfield, Non Local Boundary Conditions for the Schrödinger Equation, Ph.D. Thesis, University of Rhodes Island, Providence, RI, 1989.
[40] J.S. Papadakis, Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics, NORDA Parabolic Equation Workshop, NORDA Tech. Note 143 (1982).
[41] Petropoulos, P., Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of maxwell’s equations in rectangular, cylindrical and spherical coordinates, SIAM J. appl. math., 60, 1037-1058, (2000) · Zbl 1025.78016
[42] Pathria, D.; Morris, J.L., Pseudo-spectral solution of nonlinear Schrödinger equations, J. comput. phys., 87, 108-125, (1990) · Zbl 0691.65090
[43] Pérez-García, V.M.; Liu, X.Y., Numerical methods for the simulation of trapped nonlinear Schrödinger systems, Appl. math. comp., 144, 215-235, (2003) · Zbl 1024.65084
[44] Schädle, A., Non-reflecting boundary conditions for the two-dimensional Schrödinger equation, Wave motion, 35, 2, 181-188, (2002) · Zbl 1163.74435
[45] Schmidt, F.; Yevick, D., Discrete transparent boundary conditions for Schrödinger-type equations, J. comput. phys., 134, 96-107, (1997) · Zbl 0878.65111
[46] Soffer, A.; Stucchio, C., Open boundaries for the nonlinear Schrödinger equation, J. comput. phys., 225, 2, 1218-1232, (2007) · Zbl 1122.65094
[47] Strang, G., On the construction and comparison of difference schemes, SIAM J. numer. anal., 5, 3, 506-517, (1968) · Zbl 0184.38503
[48] Sun, Z.Z.; Wu, X.N., The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions, J. comp. phys., 214, 1, 209-223, (2006) · Zbl 1094.65088
[49] Szeftel, J., Absorbing boundary conditions for one-dimensional nonlinear Schrödinger equations, Numer. math., 104, 103-127, (2006) · Zbl 1130.35119
[50] Szeftel, J., Design of absorbing boundary conditions for Schrödinger equations in Rd, SIAM J. numer. anal., 42, 4, 1527-1551, (2004) · Zbl 1094.35037
[51] Tsynkov, S.V., Numerical solution of problems on unbounded domains: a review, Appl. numer. math., 27, 465-532, (1998) · Zbl 0939.76077
[52] Weideman, J.A.C.; Herbst, B.M., Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. numer. anal., 23, 3, 485-507, (1986) · Zbl 0597.76012
[53] Xu, Z.L.; Han, H.D.; Wu, X.N., Numerical method for the deterministic kardar – parisi – zhang equation in unbounded domains, Comm. comput. phys., 1, 479-493, (2006) · Zbl 1120.65097
[54] Zheng, C.X., Exact non-reflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations, J. comput. phys., 215, 2, 552-565, (2006) · Zbl 1094.65086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.