zbMATH — the first resource for mathematics

A high-order ENO conservative Lagrangian type scheme for the compressible Euler equations. (English) Zbl 1126.76035
Summary: We develop a class of Lagrangian type schemes for solving Euler equations of compressible gas dynamics both in Cartesian and cylindrical coordinates. The schemes are based on high-order essentially non-oscillatory (ENO) reconstruction. They are conservative for density, momentum and total energy, can maintain formal high-order accuracy both in space and time, can achieve at least uniformly second-order accuracy with moving and distorted Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test cases. One- and two-dimensional numerical examples in Cartesian and cylindrical coordinates are presented to demonstrate the performance of the schemes in terms of accuracy, resolution for discontinuities, and non-oscillatory properties.

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
PDF BibTeX Cite
Full Text: DOI
[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of computational physics, 114, 45-58, (1994) · Zbl 0822.65062
[2] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Computer methods in applied mechanics and engineering, 99, 235-394, (1992) · Zbl 0763.73052
[3] Benson, D.J., Momentum advection on a staggered mesh, Journal of computational physics, 100, 143-162, (1992) · Zbl 0758.76038
[4] Campbell, J.C.; Shashkov, M.J., A tensor artificial viscosity using a mimetic finite difference algorithm, Journal of computational physics, 172, 739-765, (2001) · Zbl 1002.76082
[5] Caramana, E.J.; Burton, D.E.; Shashkov, M.J.; Whalen, P.P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, Journal of computational physics, 146, 227-262, (1998) · Zbl 0931.76080
[6] J. Cheng and C.-W. Shu, A high order accurate conservative remapping method on staggered meshes, Applied Numerical Mathematics, in press, doi:10.1016/j.apnum.2007.04.015. · Zbl 1225.76219
[7] Després, B.; Mazeran, C., Lagrangian gas dynamics in two-dimensions and Lagrangian systems, Archive for rational mechanics and analysis, 178, 327-372, (2005) · Zbl 1096.76046
[8] Dukowicz, J.K., A general non-iterative Riemann solver for Godunov method, Journal of computational physics, 61, 119-137, (1985) · Zbl 0629.76074
[9] Dukowicz, J.K.; Cline, M.C.; Addessio, F.L., A general topology Godunov method, Journal of computational physics, 82, 29-63, (1989) · Zbl 0665.76032
[10] Dukowicz, J.K.; Meltz, B.J.A., Vorticity errors in multi-dimensional Lagrangian codes, Journal of computational physics, 99, 115-134, (1992) · Zbl 0743.76058
[11] Erlebacher, G.; Hussaini, M.Y.; Shu, C.-W., Interaction of a shock with a longitudinal vortex, Journal of fluid mechanics, 337, 129-153, (1997) · Zbl 0889.76033
[12] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R., Uniformly high order accurate essentially non-oscillatory schemes, III, Journal of computational physics, 71, 231-303, (1987) · Zbl 0652.65067
[13] Harten, A.; Osher, S., Uniformly high-order accurate non-oscillatory schemes I, SIAM journal on numerical analysis, 24, 279-309, (1987) · Zbl 0627.65102
[14] Hirt, C.; Amsden, A.; Cook, J., An arbitrary lagrangian – eulerian computing method for all flow speeds, Journal of computational physics, 14, 227-253, (1974) · Zbl 0292.76018
[15] Jiang, G.; Shu, C.-W., Efficient implementation of weighted ENO schemes, Journal of computational physics, 126, 202-228, (1996) · Zbl 0877.65065
[16] Kershaw, D.S.; Prasad, M.K.; Shaw, M.J.; Milovich, J.L., 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous finite element method, Computer methods in applied mechanics and engineering, 158, 81-116, (1998) · Zbl 0954.76045
[17] Koobus, B.; Farhat, C., Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes, Computer methods in applied mechanics and engineering, 170, 103-129, (1999) · Zbl 0943.76055
[18] Loubère, R.; Shashkov, M.J., A subcell remapping method on staggered polygonal grids for arbitrary-lagrangian – eulerian methods, Journal of computational physics, 209, 105-138, (2005) · Zbl 1329.76236
[19] Luo, H.; Baum, J.D.; Löhner, R., On the computation of multi-material flows using ALE formulation, Journal of computational physics, 194, 304-328, (2004) · Zbl 1136.76401
[20] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM journal on scientific computing, 29, 1781-1824, (2007) · Zbl 1251.76028
[21] Margolin, L.G., Introduction to an arbitrary lagrangian – eulerian computing method for all flow speeds, Journal of computational physics, 135, 198-202, (1997) · Zbl 0938.76067
[22] Munz, C.D., On Godunov-type schemes for Lagrangian gas dynamics, SIAM journal on numerical analysis, 31, 17-42, (1994) · Zbl 0796.76057
[23] von Neumann, J.; Richtmyer, R.D., A method for the calculation of hydrodynamics shocks, Journal of applied physics, 21, 232-237, (1950) · Zbl 0037.12002
[24] Noh, W.F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, Journal of computational physics, 72, 78-120, (1987) · Zbl 0619.76091
[25] Peery, J.S.; Carroll, D.E., Multi-material ALE methods in unstructured grids, Computer methods in applied mechanics and engineering, 187, 591-619, (2000) · Zbl 0980.74068
[26] Rogerson, A.; Meiberg, E., A numerical study of the convergence properties of ENO schemes, Journal of scientific computing, 5, 151-167, (1990) · Zbl 0732.65086
[27] Sedov, L.I., Similarity and dimensional methods in mechanics, (1959), Academic Press New York · Zbl 0121.18504
[28] Shu, C.-W., Numerical experiments on the accuracy of ENO and modified ENO schemes, Journal of scientific computing, 5, 127-149, (1990) · Zbl 0732.65085
[29] Shu, C.-W., Preface to the republication of “uniformly high order essentially non-oscillatory schemes, III”, by harten, engquist, osher, and chakravarthy, Journal of computational physics, 131, 1-2, (1997)
[30] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in: B. Cockburn, C. Johnson, C.-W. Shu, E. Tadmor (Eds.), Advanced Numerical Approximation of Non-linear Hyperbolic Equations, in: A. Quarteroni (Ed.), Lecture Notes in Mathematics, vol. 1697, Springer, Berlin, 1998, pp. 325-432. · Zbl 0927.65111
[31] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of computational physics, 77, 439-471, (1988) · Zbl 0653.65072
[32] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, Journal of computational physics, 83, 32-78, (1989) · Zbl 0674.65061
[33] Shu, C.-W.; Zang, T.A.; Erlebacher, G.; Whitaker, D.; Osher, S., High-order ENO schemes applied to two- and three-dimensional compressible flow, Applied numerical mathematics, 9, 45-71, (1992) · Zbl 0741.76052
[34] Smith, R.W., AUSM(ALE): a geometrically conservative arbitrary lagrangian – eulerian flux splitting scheme, Journal of computational physics, 150, 268-286, (1999) · Zbl 0936.76046
[35] Tang, H.Z.; Liu, T.T., A note on the conservative schemes for the Euler equations, Journal of computational physics, 218, 451-459, (2006) · Zbl 1103.76041
[36] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer-Verlag Berlin · Zbl 0923.76004
[37] Woodward, P.R.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of computational physics, 54, 115-173, (1984) · Zbl 0573.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.