zbMATH — the first resource for mathematics

A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. (English) Zbl 1126.76029
Summary: Blood velocity and pressure fields in large arteries are greatly influenced by the deformability of the vessel. Moreover, wave propagation phenomena in the cardiovascular system can only be described considering wall deformability since blood is usually described as an incompressible fluid. However, computational methods for simulating blood flow in three-dimensional models of arteries have either considered a rigid wall assumption for the vessel or significantly simplified or reduced geometries. Computing blood flow in deformable domains using standard techniques like the ALE method remains a formidable problem for large, realistic anatomic and physiologic models of the cardiovascular system.
We have developed a new method to simulate blood flow in three-dimensional deformable models of arteries. The method couples the equations of the deformation of the vessel wall at the variational level as a boundary condition for the fluid domain. We consider a strong coupling of the degrees of freedom of the fluid and the solid domains, and a linear membrane model (enhanced with transverse shear) for the vessel wall. The effect of the vessel wall boundary is therefore added in a monolithic way to the fluid equations, resulting in a remarkably robust scheme. We present here the mathematical formulation of the method and discuss issues related to the fluid-solid coupling, membrane formulation, time integration method, and boundary and initial conditions. Implementation is discussed and results with simple geometries as well as large subject-specific models are presented.

76M10 Finite element methods applied to problems in fluid mechanics
76Z05 Physiological flows
92C10 Biomechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI
[1] Perktold, K.; Resch, M.; Peter, R.O., Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation, J. biomech., 24, 6, 409-420, (1991)
[2] Steinman, D.A., Image-based computational fluid dynamics modeling in realistic arterial geometries, Ann. biomed. engrg., 30, 4, 483-497, (2002)
[3] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis, Ann. biomed. engrg., 26, 6, 1-14, (1998)
[4] LaDisa, J.F.; Guler, I.; Olson, L.E.; Hettrick, D.A.; Kersten, J.R.; Warltier, D.C.; Pagel, P.S., Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation, Ann. biomed. engrg., 31, 8, 972-980, (2003)
[5] Song, X.; Throckmorton, A.L.; Wood, H.G.; Allaire, P.E.; Olsen, D.B., Transient and quasi-steady computational fluid dynamics study of a left ventricular assist device, Asaio J., 50, 5, 410-417, (2004)
[6] Stuhne, G.R.; Steinman, D.A., Finite-element modeling of the hemodynamics of stented aneurysms, Trans. ASME J. biomech. engrg., 126, 3, 382-387, (2004)
[7] de Leval, M.R.; Dubini, G.; Migliavacca, F.; Jalali, H.; Camporini, G.; Redington, A.; Pietrabissa, R., Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections, J. thorac. cardiovasc. surg., 111, 3, 502-513, (1996)
[8] Lagana, K.; Dubini, G.; Migliavacca, F.; Pietrabissa, R.; Pennati, G.; Veneziani, A.; Quarteroni, A., Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures, Biorheology, 39, 3-4, 359-364, (2002)
[9] Migliavacca, F.; Kilner, P.J.; Pennati, G.; Dubini, G.; Pietrabissa, R.; Fumero, R.; de Leval, M.R., Computational fluid dynamic and magnetic resonance analyses of flow distribution between the lungs after total cavopulmonary connection, IEEE trans. biomed. engrg., 46, 4, 393-399, (1999)
[10] Taylor, C.A.; Draney, M.T.; Ku, J.P.; Parker, D.; Steele, B.N.; Wang, K.; Zarins, C.K., Predictive medicine: computational techniques in therapeutic decision-making, Comput. aided surg., 4, 5, 231-247, (1999)
[11] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Finite element modeling of blood flow in arteries, Comput. methods appl. mech. engrg., 158, 155-196, (1998) · Zbl 0953.76058
[12] Oshima, M.; Torii, R.; Kobayashi, T.; Taniguchi, N.; Takagi, K., Finite element simulation of blood flow in the cerebral artery, Comput. methods appl. mech. engrg., 191, 6-7, 661-671, (2001) · Zbl 0999.76081
[13] Cebral, J.R.; Castro, M.A.; Soto, O.; Lohner, R.; Alperin, N., Blood-flow models of the circle of willis from magnetic resonance data, J. engrg. math., 47, 3-4, 369-386, (2003) · Zbl 1050.76064
[14] Shojima, M.; Oshima, M.; Takagi, K.; Torii, R.; Hayakawa, M.; Katada, K.; Morita, A.; Kirino, T., Magnitude and role of wall shear stress on cerebral aneurysm - computational fluid dynamic study of 20 middle cerebral artery aneurysms, Stroke, 35, 11, 2500-2505, (2004)
[15] Salmon, S.; Thiriet, M.; Gerbeau, J.F., Medical image-based computational model of pulsatile flow in saccular aneurisms, Math. modell. numer. anal., 37, 4, 663-679, (2003) · Zbl 1065.92029
[16] Perktold, K.; Rappitsch, G., Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model, J. biomech., 28, 7, 845-856, (1995)
[17] van de Vosse, F.N.; de Hart, J.; van Oijen, C.H.G.A.; Bessems, D.; Gunther, T.W.M.; Segal, A.; Wolters, B.J.B.M.; Stijnen, J.M.A.; Baaijens, F.P.T., Finite-element-based computational methods for cardiovascular fluid-structure interaction, J. engrg. math., 47, 3/4, 335-368, (2003) · Zbl 1057.74047
[18] Formaggia, L.; Gerbeau, J.F.; Nobile, F.; Quarteroni, A., On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. methods appl. mech. engrg., 191, 6/7, 561-582, (2001) · Zbl 1007.74035
[19] I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen, C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2005.04.014. · Zbl 1175.76098
[20] Hughes, T.J.R.; Liu, W.K.; Zimmermann, T.K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. methods appl. mech. engrg., 29, 329-349, (1981) · Zbl 0482.76039
[21] Donea, J.; Giuliani, S.; Halleux, J.P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. methods appl. mech. engrg., 33, 1-3, 689-723, (1982) · Zbl 0508.73063
[22] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 3, 339-351, (1992) · Zbl 0745.76044
[23] Mittal, S.; Tezduyar, T.E., Massively parallel finite element computation of incompressible flows involving fluid-body interactions, Comput. methods appl. mech. engrg., 112, 1-4, 253-282, (1994) · Zbl 0846.76048
[24] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids, J. comput. phys., 174, 2, 669-694, (2001) · Zbl 1157.76372
[25] Farhat, C.; Geuzaine, P., Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids, Comput. methods appl. mech. engrg., 193, 39-41, 4073-4095, (2004) · Zbl 1068.76063
[26] Le Tallec, P.; Mouro, J., Fluid structure interaction with large structural displacements, Comput. methods appl. mech. engrg., 190, 24-25, 3039-3067, (2001) · Zbl 1001.74040
[27] Leuprecht, A.; Perktold, K.; Prosi, M.; Berk, T.; Trubel, W.; Schima, H., Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts, J. biomech., 35, 2, 225-236, (2002)
[28] Leuprecht, A.; Kozerke, S.; Boesiger, P.; Perktold, K., Blood flow in the human ascending aorta: a combined MRI and CFD study, J. engrg. math., 47, 3/4, 387-404, (2003) · Zbl 1065.76211
[29] Heil, M., An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. methods appl. mech. engrg., 193, 1-2, 1-23, (2004) · Zbl 1137.74439
[30] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comput. visualizat. sci., 2, 4, 163-197, (2000) · Zbl 1096.76042
[31] Grandmont, C.; Maday, Y., Fluid-structure interaction: A theoretical point of view, (2003), Kogan Page Science London
[32] De Hart, J.; Baaijens, F.P.T.; Peters, G.W.M.; Schreurs, P.J.G., A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve, J. biomech., 36, 5, 699-712, (2003)
[33] Peskin, C.S.; McQueen, D.M., A general method for the computer simulation of biological systems interacting with fluids, Symposia soc. exp. biol., 49, 265-276, (1995)
[34] Fernandez, M.A.; Le Tallec, P., Linear stability analysis in fluid-structure interaction with transpiration. part II: numerical analysis and applications, Comput. methods appl. mech. engrg., 192, 43, 4837-4873, (2003) · Zbl 1054.74017
[35] Deparis, S.; Fernandez, M.A.; Formaggia, L., Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, Math. modell. numer. anal., 37, 4, 601-616, (2003) · Zbl 1118.74315
[36] Womersley, J.R., Oscillatory motion of a viscous liquid in a thin walled elastic tube - i: the linear approximation for long waves, Philos. mag., 7, 199-221, (1955) · Zbl 0064.43903
[37] Whiting, C.H.; Jansen, K.E., A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis, Int. J. numer. methods fluids, 35, 93-116, (2001) · Zbl 0990.76048
[38] Gresho, P.M.; Sani, R.L., Incompressible flow and the finite element method, (2000), Wiley · Zbl 0988.76005
[39] Hughes, T.J.R.; Franca, L.P.; Balestra, M., New finite element formulation for computational fluid dynamics: V. circumventing the babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 1, 85-99, (1986) · Zbl 0622.76077
[40] Franca, L.P.; Frey, S.L., Stabilized finite element methods. II. the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 99, 2/3, 209-233, (1992) · Zbl 0765.76048
[41] Fung, Y.-C.; Zhou, J., The degree of nonlinearity and anisotropy of blood vessel elasticity, Proc. natl. acad. sci., 94, 14255-14260, (1997)
[42] Causin, P.; Gerbeau, J.F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. methods appl. mech. engrg., 194, 42-44, 4506-4527, (2005) · Zbl 1101.74027
[43] Hughes, T.J.R., The finite element method. linear static and dynamic finite element analysis, (2000), Dover New York
[44] Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J., Concepts and applications of finite element analysis, (2002), John Wiley & Sons New York
[45] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method, J. appl. mech., 60, 371-375, (1993) · Zbl 0775.73337
[46] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., Generalized-alpha method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput. methods appl. mech. engrg., 190, 3-4, 305-319, (2000) · Zbl 0973.76048
[47] C.A. Figueroa, Blood flow and vessel deformation in human arteries: applications in disease research and simulation-based medical planning, Ph.D. Thesis, Stanford University, 2006.
[48] Nichols, W.W.; O’Rourke, M.F., Mcdonald’s blood flow in arteries: theoretical, experimental and clinical principles, (1998), Oxford University Press New York
[49] J.R. Cebral, R. Lohner, O. Soto, P.J. Yim, On the modelling of carotid blood flow from magnetic resonance images, in: Proceedings of the 2001 Summer Bioengineering Meeting, 2001.
[50] Holdsworth, D.W.; Norley, C.J.D.; Frayne, R.; Steinman, D.A.; Rutt, B.K., Characterization of common carotid artery blood-flow waveforms in normal subjects, Physiol. meas., 20, 219-240, (1999)
[51] Vignon, I.; Taylor, C.A., Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries, Wave motion, 39, 4, 361-374, (2004) · Zbl 1163.74453
[52] Milnor, W.R., Hemodynamics, (1989), Williams & Wilkins · Zbl 0354.76079
[53] B.T. Tang, C.P. Cheng, P.S. Tsao, C.A. Taylor, Subject-specific finite element modeling of three-dimensional pulsatile flow in the human abdominal aorta: comparison of resting and exercise conditions, in: Proceedings of the 2003 Summer Bioengineering Meeting, Key Biscayne, FL, 2003.
[54] Ganong, W.F.M., Review of medical physiology, (1995), Appleton & Lange Englewood Cliffs
[55] Guyton, A.C., Physiology of the human body, (1984), Saunders College Publishing San Francisco
[56] Wolinsky, H.; Glagov, S., Comparison of abdominal and thoracic aortic medial structure in mammals. deviation of man from the usual pattern, Circ. res., 25, 6, 677-686, (1969)
[57] Humphrey, J.D., Cardiovascular solid mechanics. cells, tissues and organs, (2002), Springer New York
[58] Holenstein, R.; Niederer, P.; Anliker, M., A viscoelastic model for use in predicting arterial pulse waves, J. biomech. engrg., 102, 4, 318-325, (1980)
[59] Womersley, J.R., Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission, Phys. med. biol., 2, 178-187, (1957)
[60] Oñate, E.; Zarate, F., Rotation-free triangular plate and shell elements, Int. J. numer. methods engrg., 47, 1, 557-603, (2000) · Zbl 0968.74070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.