zbMATH — the first resource for mathematics

High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. (English) Zbl 1125.92007
Summary: High-frequency vibrations, e.g., induced by legs impacting with the ground during terrestrial locomotion can provoke damage within tendons even leading to ruptures. So far, macroscopic Hill-type muscle models do not account for the observed high-frequency damping at low-amplitudes. Therefore, former studies proposed that protective damping might be explained by modelling the contractile machinery of the muscles in more detail, i.e., taking the microscopic processes of the actin-myosin coupling into account. In contrast, this study formulates an alternative hypothesis: low but significant damping of the passive material in series to the contractile machinery, e.g., tendons, aponeuroses, titin-may well suffice to damp these hazardous vibrations. Thereto, we measured the contraction dynamics of a piglet muscle-tendon complex (MTC) in three contraction modes at varying loads and muscle-tendon lengths. We simulated all three respective load situations on a computer: a Hill-type muscle model including a contractile element (CE) and each an elastic element in parallel (PEE) and in series (SEE) to the CE pulled on a loading mass. By comparing the model to the measured output of the MTC, we extracted a consistent set of muscle parameters. We varied the model by introducing either linear damping in parallel or in series to the CE leading to accordant re-formulations of the contraction dynamics of the CE. The comparison of the three cases \((no\) additional damping, parallel damping, serial damping) revealed that serial damping at a physiological magnitude suffices to explain damping of high-frequency vibrations of low amplitudes. The simulation demonstrates that any undamped serial structure within the MTC enforces SEE-load eigenoscillations. Consequently, damping must be spread all over the MTC, i.e., rather has to be de-localised than localised within just the active muscle material. Additionally, due to suppressed eigenoscillations Hill-type muscle models taking into account serial damping are numerically more efficient when used in macroscopic biomechanical neuro-musculo-skeletal models.

92C10 Biomechanics
93A30 Mathematical modelling of systems (MSC2010)
Full Text: DOI
[1] Alexander RMcN (1988) Elastic mechanisms in animal movement. Cambrigde University Press, Cambridge
[2] Alexander RMcN (2001) Damper for bad vibrations. Nature 414(6866):855–857 · doi:10.1038/414855a
[3] Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250(4984):1097–1103 · doi:10.1126/science.2251499
[4] Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22(11/12):1217–1227 · doi:10.1016/0021-9290(89)90224-8
[5] Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96(7):3694–3699 · doi:10.1073/pnas.96.7.3694
[6] Cavagna GA (1970) Elastic bounce of the body. J Appl Physiol 29(3):279–282
[7] Chow JW, Darling WG (1999) The maximum shortening velocity of muscle should be scaled with activation. J Appl Physiol 86(3):1025–1031
[8] Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton, NJ
[9] Davy DT, Audu ML (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech 20(2):187–201 · doi:10.1016/0021-9290(87)90310-1
[10] Denoth J (1985) The dynamic behaviour of a three link model of the human body during impact with the ground. In: Winter DA, Norman RW, Wells RP, Hayes KC, Patla AE (eds) Biomechanics 9-A, vol 5B of International Series on Biomechanics. Human Kinetics Publishers, Champaign, pp 102–106
[11] Denoth J, Stüssi E, Csucs G, Danuser G (2002) Single muscle fiber contraction is dictated by inter-sarcomere dynamics. J Theor Biol 216(1):101–122 · doi:10.1006/jtbi.2001.2519
[12] Epstein M, Herzog W (2003) Aspects of skeletal muscle modelling. Philos Trans R Soc Lond B 358(1437):1445–1452 · doi:10.1098/rstb.2003.1344
[13] Ettema GJ, Meijer K (2000) Muscle contraction history: modified Hill versus an exponential decay model. Biol Cybern 83(6):491–500 · doi:10.1007/s004220000190
[14] Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol 184:170–192
[15] Granzier HL, Labeit S (2006) The giant muscle protein titin is an adjustable molecular spring. Exerc Sport Sci Rev 34(2):50–53 · doi:10.1249/00003677-200604000-00002
[16] Gruber K, Ruder H, Denoth J, Schneider K (1998) A comparative study of impact dynamics: wobbling mass model versus rigid body models. J Biomech 31(5):439–444 · doi:10.1016/S0021-9290(98)00033-5
[17] Günther M, Ruder H (2003) Synthesis of two-dimensional human walking: a test of the \(\lambda\)-model. Biol Cybern 89(2):89–106 · Zbl 1084.92004 · doi:10.1007/s00422-003-0414-x
[18] Günther M, Sholukha VA, Keßler D, Wank V, Blickhan R (2003) Dealing with skin motion and wobbling masses in inverse dynamics. J Mech Med Biol 3(3/4):309–335 · doi:10.1142/S0219519403000831
[19] Hatze H (1977) A myocybernetic control model of skeletal muscle. Biol Cybern 25:103–119 · Zbl 0346.92011 · doi:10.1007/BF00337268
[20] Hatze H (1981) Myocybernetic control models of skeletal muscle–characteristics and applications. University of South Africa Press, Pretoria · Zbl 0635.92003
[21] Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B 126:136–195 · doi:10.1098/rspb.1938.0050
[22] Julian FJ (1971) The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J Physiol 218:117–145
[23] Katz B (1939) The relation between force and speed in muscular contraction. J Physiol 96:45–64
[24] Ker RF (1981) Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J Exp Biol 93:283–302
[25] Ker RF, Wang XT, Pike AV (2000) Fatigue quality of mammalian tendons. J Exp Biol 203(Pt 8):1317–1327
[26] Ker RF, Zioupos P (1997) Creep and fatigue damage of mammalian tendon and bone. Comments Theor Biol 4(2-3):151–181
[27] Kistemaker DA, van Soest AJ, Bobbert MF (2006) Is equilibrium point control feasible for fast goal-directed single-joint movements? J Neurophysiol 95(5):2898–2912 · doi:10.1152/jn.00983.2005
[28] Krause PC, Choi JS, McMahon TA (1995) The force-velocity curve in passive whole muscle is asymmetric about zero velocity. J Biomech 28(9):1035–1043 · doi:10.1016/0021-9290(94)00162-W
[29] Krieg M (1992) Simulation und Steuerung biomechanischer Mehrkörpersysteme. Master’s thesis. Eberhard-Karls-Universität, Tübingen, Germany
[30] Lan G, Sun SX (2005) Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation. Biophys J 88(6):4107–4117 · doi:10.1529/biophysj.104.056846
[31] Lombardi V, Piazzesi G, Ferenczi MA, Thirlwell H, Dobbie I, Irving M (1995) Elastic distortion of myosin heads and repriming of the working stroke in muscle. Nature 374(6522):553–555 · doi:10.1038/374553a0
[32] Lombardi V, Piazzesi G, Reconditi M, Linari M, Lucii L, Stewart A, Sun YB, Boesecke P, Narayanan T, Irving T, Irving M (2004) X-ray diffraction studies of the contractile mechanism in single muscle fibres. Philos Trans R Soc Lond B 359(1452):1883–1893 · doi:10.1098/rstb.2004.1557
[33] Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K, Fernandez JM (1999) Mechanical unfolding intermediates in titin modules. Nature 402(6757):100–103 · doi:10.1038/47083
[34] McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23(Suppl. 1):65–78 · doi:10.1016/0021-9290(90)90042-2
[35] Meijer K, Grootenboer HJ, Koopman HF, van der Linden BJ, Huijing PA (1998) A Hill type model of rat medial gastrocnemius muscle that accounts for shortening history effects. J Biomech 31(6):555–563 · doi:10.1016/S0021-9290(98)00048-7
[36] Minajeva A, Kulke M, Fernandez JM, Linke WA (2001) Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys J 80(3):1442–1451 · doi:10.1016/S0006-3495(01)76116-4
[37] Pain MTG, Challis JH (2006) The influence of soft tissue movement on ground reaction forces, joint torques and reaction forces in drop landings. J Biomech 39(1):119–124 · doi:10.1016/j.jbiomech.2004.10.036
[38] Petrofsky JS, Phillips CA (1981) The influence of temperature, initial length and electrical activity on force-velocity relationship of the medial gastrocnemius muscle of the cat. J Biomech 14(5):297–306 · doi:10.1016/0021-9290(81)90039-7
[39] Piazzesi G, Lombardi V (1995) A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys J 68(5):1966–1979 · doi:10.1016/S0006-3495(95)80374-7
[40] Piazzesi G, Lombardi V (1996) Simulation of the rapid regeneration of the actin-myosin working stroke with a tight coupling model of muscle contraction. J Muscle Res Cell Motil 17(1):45–53 · doi:10.1007/BF00140323
[41] Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical recipes in C–the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge
[42] Proske U, Morgan DL (1987) Tendon stiffness: methods of measurement and significance for the control of movement. A review. J Biomech 20(1):75–82 · doi:10.1016/0021-9290(87)90269-7
[43] Reconditi M, Linari M, Lucii L, Stewart A, Sun YB, Boesecke P, Narayanan T, Fischetti RF, Irving T, Piazzesi G, Irving M, Lombardi V (2004) The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428(6982):578–581 · doi:10.1038/nature02380
[44] Reinsch CH (1967) Smoothing by spline functions. Numerische Mathematik 10(3):177–183 · Zbl 0161.36203 · doi:10.1007/BF02162161
[45] Riemersma DJ, Schamhardt HC (1985) In vitro mechanical properties of equine tendons in relation to cross-sectional area and collagen content. Res Vet Sci 39(3):263–270
[46] Rode C, Siebert T, Herzog W, Blickhan R (2006) The effects of parallel and series elastic components on estimated active muscle force (submitted to the J Biomech)
[47] Schmalz T (1993a) Biomechanische Modellierung menschlicher Bewegung, vol 26 of Wissenschaftliche Schriftenreihe des Deutschen Sportbundes. Karl Hofmann, Schorndorf, Germany
[48] Schmalz T (1993b) Die Nutzung biomechanischer Modelle zur Bestimmung rheologischer Eigenschaften des Muskel-Sehnen-Komplexes. In: Gutewort W, Schmalz T, Weiß T (eds), Symposium Oberhof: Aktuelle Hauptforschungsrichtungen der Biomechanik sportlicher Bewegungen, vol 55, Sankt Augustin, Germany, 1993. Deutsche Vereinigung für Sportwissenschaft (dvs), Academia, pp 102–108
[49] Shadwick RE (1990) Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol 68(3):1033–1040 · doi:10.1063/1.346741
[50] Shampine LF, Gordon MK (1975) Computer solution of ordinary differential equations: the initial value problem. W.H. Freeman & Co., San Francisco · Zbl 0347.65001
[51] Siebert T, Wagner H, Blickhan R (2003) Not all oscillations are rubbish: forward simulation of quick-release experiments. J Mech Med Biol 3(1):107–122 · doi:10.1142/S0219519403000648
[52] Stern JT (1974) Computer modeling of gross muscle dynamics. J Biomech 7:411–428 · doi:10.1016/0021-9290(74)90004-9
[53] Telley IA, Denoth J, Ranatunga KW (2003) Inter-sarcomere dynamics in muscle fibres. A neglected subject? Adv Exp Med Biol 538:481–500
[54] Tskhovrebova L, Trinick J (2002) Role of titin in vertebrate striated muscle. Philos Trans R Soc Lond B 357(1418):199–206 · doi:10.1098/rstb.2001.1028
[55] van Ingen Schenau GJ (1984) An alternative view to the concept of utilization of elastic energy. Hum Mov Sci 3:301–336 · doi:10.1016/0167-9457(84)90013-7
[56] van Leeuwen JL (1992) Muscle function in locomotion. In: Alexander RMcN (ed) Advances in comparative and environmental physiology, vol 11, chap 7. Springer, Berlin, pp 191–250
[57] van Soest AJ (1992) Jumping from structure to control: a simulation study of explosive movements. PhD thesis, Vrije Universiteit, Amsterdam
[58] van Soest AJ, Bobbert MF (1993) The contribution of muscle properties in the control of explosive movements. Biol Cybern 69(3):195–204 · doi:10.1007/BF00198959
[59] Wakeling JM, Nigg BM (2001) Soft-tissue vibrations in the quadriceps measured with skin mounted transducers. J Biomech 34(4):539–543 · doi:10.1016/S0021-9290(00)00203-7
[60] Wank V (2000) Aufbau und Anwendung von Muskel-Skelett-Modellen. Habilitationsschrift der Friedrich-Schiller-Universität Jena
[61] Wank V, Bauer R, Walter B, Kluge H, Fischer MS, Blickhan R, Zwiener U (2000) Accelerated contractile function and improved fatigue resistance of calf muscles in newborn piglets with IUGR. Am J Physiol Regul Integr Comp Physiol 278(2):R304–R310
[62] Wank V, Fischer MS, Walter B, Bauer R (2006) Muscle growth and fiber type composition in hind limb muscles during postnatal development in pigs. Cells Tissues Organs 182(3-4):171–181 · doi:10.1159/000093966
[63] Wilson AM, Goodship AE (1994) Exercise-induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech 27(7):899–905 · doi:10.1016/0021-9290(94)90262-3
[64] Wilson AM, McGuigan MP, Su A, van den Bogert AJ (2001) Horses damp the spring in their step. Nature 414(6866):895–899 · doi:10.1038/414895a
[65] Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. In: Bourne JR (ed) CRC critical reviews in biomedical engineering, vol 17. CRC Press, Boca Raton, pp 359–411
[66] Zioupos P, Currey JD, Casinos A (2001) Tensile fatigue in bone: are cycles-, or time to failure, or both, important? J Theor Biol 210(3):389–399 · doi:10.1006/jtbi.2001.2316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.