×

zbMATH — the first resource for mathematics

Derivation of the Adomian decomposition method using the homotopy analysis method. (English) Zbl 1125.65063
The solution of a nonlinear equation \( L(y(x)) + N(y(x)) = 0 \), where \(L\) and \(N\) are linear and nonlinear operators, respectively, is represented in the form
\[ y =\sum_{n=0}^{\infty} y_{n} . \] The terms \(y_{n}\) can be calculated by recurrent relations using the decomposition \[ N(y)=\sum_{n=0}^{\infty} A_{n}, \] where \(A_{n}\) are the Adomian polynomials. The author proves that this method can be obtained using another analytical method.

MSC:
65L05 Numerical methods for initial value problems involving ordinary differential equations
34L30 Nonlinear ordinary differential operators
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
65L70 Error bounds for numerical methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adomian, G., Solving frontier problems on physics: the decomposition method, (1994), Kluwer Academic Publisher Boston · Zbl 0802.65122
[2] Adomian, G., A review of the decomposition method in applied mathematics, J. math. anal. appl., 135, 501-544, (1988) · Zbl 0671.34053
[3] Adomian, G., Solution of the thomas – fermi equation, Appl. math. lett., 11, 3, 31-133, (1998) · Zbl 0947.34501
[4] Al Khaled, K.; Allan, F., Construction of solution of shallow water equation by decomposition method, Math. comput. sim., 66, 6, 479-486, (2004) · Zbl 1113.65098
[5] AL Khaled, K.; Allan, F., Decomposition method for solving nonlinear integro-differential equations, Kor. J. appl. math. comput., 19, 1, 415-425, (2005) · Zbl 1082.65138
[6] F. Allan, On the analytic solution of non-linear boundary value problem with infinite domain, in: Proceedings of the 6th Annual Conference of UAEU, 9 (April) 2005.
[7] Allan, F.; Al Khaled, K., On the analytic solution of fully developed shock wave equation, J. comput. appl. math., 192, 2, 301-309, (2006) · Zbl 1091.65104
[8] Allan, F.; Syam, M., On the analytic solutions of the nonhomogeneous Blasius problem, J. comput. appl. math., 182, 2, 362-371, (2005) · Zbl 1071.65108
[9] Cherrualt, Y., Convergence of adomian’s method, Kybernetes, 18, 31-38, (1989)
[10] Cherrualt, Y.; Adomian, G., Decomposition methods: a new proof of convergence, Math. comput. model., 18, 103-106, (1993) · Zbl 0805.65057
[11] He, J.H., Variational iteration method: a kind of nonlinear analytical technique: some examples, Int. non-linear mech., 344, 699-708, (1999) · Zbl 1342.34005
[12] Golberg, M.A., A note on the decomposition method for operator equations, Appl. math. comput., 106, 2-3, 215-220, (1999) · Zbl 1022.65067
[13] He, J.H., Variational iteration method for autonomous ordinary differential system, Appl. math. comput., 114, 2, 115-123, (2000) · Zbl 1027.34009
[14] He, J.H., Commun. nonlinear sci. num. simul., 3, 107-120, (2002)
[15] He, J.H., Homotopy perturbation method: a new nonlinear technique, Appl. math. comput., 135, 73-79, (2003) · Zbl 1030.34013
[16] Liao, S.J., An explicit, totally analytic approximate solution for Blasius viscous flow problems, Int. J. non-linear mech., 34, 759-778, (1999) · Zbl 1342.74180
[17] Liao, S.J.; Chung, K.F., Analytic solution for nonlinear progressive waves in deep water, J. eng. math., 45, 2, (2003)
[18] Liao, S.J., An explicit analytic solution to the thomas – fermi equation, Appl. math. comput., 144, 433-444, (2003)
[19] Liao, S.J.; Compo, A., Analytic solution of the temperature distribution in blasuis viscous flow problem, J. fluid mech., 453, 411-425, (2002)
[20] Lensic, D., The decomposition method for Cauchy reaction – diffusion problems, Appl. math. lett., 20, 4, 412-418, (2007) · Zbl 1169.35304
[21] Lensic, D., The decomposition method for initial value problems, Appl. math. com., 181, 11, 206-213, (2006) · Zbl 1148.65081
[22] Lensic, D., Decomposition methods for non-linear, non-characteristic Cauchy heat problems, Commun. nonlinear sci. num. sim., 10, 6, 581-596, (2005) · Zbl 1072.35087
[23] Lensic, D., The decomposition method for Cauchy advection – diffusion problems, Comput. math. appl., 49, 4, 525-537, (2005) · Zbl 1138.65307
[24] Lensic, D.; Heggs, P.J., A decomposition method for power-law fin-type problems, Int. commun. heat mass transfer, 31, 5, 673-682, (2004)
[25] Lensic, D., The decomposition method for forward and backward time-dependent problems, J. comput. appl. math., 147, 1, (2002)
[26] Lensic, D., Convergence of adomian’s decomposition method: periodic temperatures, Comput. math. appl., 44, 1-2, 13-24, (2002) · Zbl 1125.65347
[27] Lensic, D.; Elliott, L., The decomposition approach to inverse heat conduction, J. math. anal. appl., 232, 1, 82-98, (1999) · Zbl 0922.35189
[28] Momani, S.; Shawagfeh, N., Decomposition method for solving fractional Riccati differential equations, Appl. math. comput., 182, 2, 1083-1092, (2006) · Zbl 1107.65121
[29] Shawagfeh´, Nabil T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. math. comput., 131, 2-3, 517-529, (2002) · Zbl 1029.34003
[30] Shawagfeh, N.T., Analytic approximate solution for a nonlinear oscillator equation, Comput. math. appl., 31, 6, 135-141, (1996) · Zbl 0845.34020
[31] Wazwaz, A.M., Padé approximants and Adomian decomposition method for solving the flierl – petviashivili equation and its variants, Appl. math. comput., 182, 2, 1812-1818, (2006) · Zbl 1107.65061
[32] Wazwaz, A.M., A comparison study between the modified decomposition method and the traditional methods for solving nonlinear integral equations, Appl. math. comput., 181, 2, 1703-1712, (2006) · Zbl 1105.65128
[33] A.M.Wazwaz, A comparison between the variational iteration method and Adomian decomposition method, J. Comput. Appl., in press, doi:10.1016/j.cam.2006.07.018. · Zbl 1119.65103
[34] Wazwaz, A.M., The modified decomposition method and Padé approximants for a boundary layer equation in unbounded domain, Appl. math. comput., 177, 2, 737-744, (2006) · Zbl 1096.65072
[35] Wazwaz, A.M., The modified decomposition method for analytic treatment of differential equations, Appl. math. comput., 173, 1, 165-176, (2006) · Zbl 1089.65112
[36] Wazwaz, A.M., Adomian decomposition method for a reliable treatment of the bratu-type equations, Appl. math. comput., 166, 3, 652-663, (2005) · Zbl 1073.65068
[37] Wazwaz, A.M., Adomian decomposition method for a reliable treatment of the emden – fowler equation, Appl. math. comput., 161, 2, 543-560, (2005) · Zbl 1061.65064
[38] Wazwaz, A.M.; El-Sayed, Salah M., A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. math. comput., 122, 3, 393-405, (2001) · Zbl 1027.35008
[39] Wazwaz, A.M., The modified decomposition method applied to unsteady flow of gas through a porous medium, Appl. math. comput., 118, 2-3, 123-132, (2001) · Zbl 1024.76056
[40] Wazwaz, A.M., A reliable modification of Adomian decomposition method, Appl. math. comput., 102, 1, 77-86, (1999) · Zbl 0928.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.