zbMATH — the first resource for mathematics

High order numerical methods to a type of delta function integrals. (English) Zbl 1125.65024
Summary: We study second to fourth order numerical methods to a type of delta function integrals in one to three dimensions. These delta function integrals arise from recent efficient level set methods for computing the multivalued solutions of nonlinear partial differential equations. We show that the natural quadrature approach with usual discrete delta functions and support size formulas to the two dimensional delta function integrals suffer from nonconvergence. We then design high order numerical methods to this type of delta function integrals based on an interpolation approach. Numerical examples are presented to verify the efficiency and accuracy of our methods.

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
41A63 Multidimensional problems (should also be assigned at least one other classification number from Section 41-XX)
Full Text: DOI
[1] Benamou, J.-D., Big ray tracing: multivalued travel time field computation using viscosity solutions of the eikonal equation, J. comput. phys., 128, 463-474, (1996) · Zbl 0860.65052
[2] Beyer, R.P.; LeVeque, R.J., Analysis of a one dimensional model for the immersed boundary method, SIAM J. num. anal., 29, 332-364, (1992) · Zbl 0762.65052
[3] D. Calhoun, P. Smereka, The numerical approximation of a delta function, preprint, 2004.
[4] Cheng, L.-T., Construction of shapes arising from the Minkowski problem using a level set approach, J. sci. comp., 19, 123-138, (2003) · Zbl 1035.65093
[5] Cheng, L.-T.; Liu, H.-L.; Osher, S., Computational high frequency wave propagation using the level set method, with applications to the semiclassical limit of Schrödinger equations, Comm. math. sci., 1, 593-621, (2003) · Zbl 1084.35066
[6] Engquist, B.; Runborg, O., Computational high frequency wave propagation, Acta numer., 12, 181-266, (2003) · Zbl 1049.65098
[7] Engquist, B.; Runborg, O.; Tornberg, A.-K., High frequency wave propagation by the segment projection method, J. comput. phys., 178, 2, 373-390, (2002) · Zbl 0996.78001
[8] Engquist, B.; Tornberg, A.K.; Tsai, R., Discretization of Dirac delta functions in level set methods, J. comput. phys., 207, 1, 28-51, (2005) · Zbl 1074.65025
[9] Fatemi, E.; Engquist, B.; Osher, S., Numerical solution of the high frequency asymptotic expansion for the scalar wave equation, J. comput. phys., 120, 145-155, (1995) · Zbl 0836.65099
[10] Gérard, P.; Markowich, P.A.; Mauser, N.J.; Poupaud, F., Homogenization limits and Wigner transforms, Comm. pure appl. math., 50, 321-377, (1997) · Zbl 0881.35099
[11] Hou, T.Y.; Li, Z.L.; Osher, S.; Zhao, H.K., A hybrid method for moving interface problems with application to the hele – shaw flow, J. comput. phys., 134, 236-252, (1997) · Zbl 0888.76067
[12] Jin, S.; Li, X.T., Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner, Physica D, 182, 46-85, (2003) · Zbl 1073.81041
[13] Jin, S.; Liu, H.L.; Osher, S.; Tsai, R., Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation, J. comput. phys., 205, 222-241, (2005) · Zbl 1072.65132
[14] Jin, S.; Liu, H.L.; Osher, S.; Tsai, R., Computing multivalued physical observables for high frequency limit of symmetric hyperbolic systems, J. comput. phys., 210, 497-518, (2005) · Zbl 1098.65094
[15] Jin, S.; Osher, S., A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE’s and hamilton – jacobi equations, Comm. math. sci., 1, 3, 575-591, (2003) · Zbl 1090.35116
[16] Jin, S.; Wen, X., Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials, Commun. math. sci., 3, 285-315, (2005) · Zbl 1094.35074
[17] Jin, S.; Wen, X., Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds, J. comput. phys., 214, 672-697, (2006) · Zbl 1093.78002
[18] S. Jin, X. Yang, Computation of the semiclassical limit of the Schrodinger equation with phase shift by a level set method, J. Sci. Comp. (2007), doi:10.1007/s10915-007-9137-9
[19] Liu, X.D.; Fedkiw, R.; Kang, M., A boundary condition capturing method for poisson’s equation on irregular domains, J. comput. phys., 160, 151-178, (2000) · Zbl 0958.65105
[20] Lions, P.L.; Paul, T., Sur LES measures de Wigner, Revista. mat. iberoamericana, 9, 553-618, (1993) · Zbl 0801.35117
[21] Osher, S.; Cheng, L.-T.; Kang, M.; Shim, H.; Tsai, Y.-H., Geometric optics in a phase-space-based level set and Eulerian framework, J. comput. phys., 179, 2, 622-648, (2002) · Zbl 0999.78002
[22] Osher, S.; Fedkiw, R.P., Level set methods and dynamic implicit surfaces, (2002), Springer Verlag
[23] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M., A PDE-based fast local level set method, J. comput. phys., 155, 410-438, (1999) · Zbl 0964.76069
[24] Peskin, C.S., The immersed boundary method, Acta numer., 11, 479-511, (2002) · Zbl 1123.74309
[25] Ryzhik, L.; Papanicolaou, G.; Keller, J., Transport equations for elastic and other waves in random media, Wave motion, 24, 327-370, (1996) · Zbl 0954.74533
[26] Sethian, J.A., Level set methods and fast marching methods, Evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science, (1999), Cambridge University Press · Zbl 0973.76003
[27] Smereka, P., The numerical approximation of a delta function with application to level set methods, J. comput. phys., 211, 77-90, (2006) · Zbl 1086.65503
[28] Sparber, C.; Markowich, P.; Mauser, N., Multivalued geometrical optics: Wigner vs. WKB, Asymptotic anal., 33, 1530187, (2003)
[29] Sussman, M.; Smereka, P.; Osher, S., A level set method for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146-159, (1994) · Zbl 0808.76077
[30] Tornberg, A.-K., Multi-dimensional quadrature of singular and discontinuous functions, Bit, 42, 644-669, (2002) · Zbl 1021.65010
[31] Tornberg, A.-K.; Engquist, B., Regularization techniques for numerical approximation of PDEs with singularities, J. sci. comp., 19, 527-552, (2003) · Zbl 1035.65085
[32] Tornberg, A.-K.; Engquist, B., Numerical approximations of singular source terms in differential equations, J. comput. phys., 200, 462-488, (2004) · Zbl 1115.76392
[33] Towers, J.D., Two methods for discretizing a delta function supported on a level set, J. comput. phys., 220, 2, 915-931, (2007) · Zbl 1115.65028
[34] Unverdi, S.O.; Trygvasson, G., A front-tracking method for the computation of multiphase flow, J. comput. phys., 100, 25-37, (1992)
[35] Waldén, J., On the approximation of singular source terms in differential equations, Numer. meth. part. D.E., 15, 503-520, (1999) · Zbl 0938.65112
[36] X. Wen, High order numerical quadratures to one dimensional delta function integrals, preprint. · Zbl 1170.65008
[37] Ying, L.; Candes, E., The phase flow method, J. comput. phys., 220, 1, 184-215, (2006) · Zbl 1110.65119
[38] Zhao, H.-K.; Chan, T.; Merriman, B.; Osher, S., A variational level set approach to multiphase motion, J. comput. phys., 127, 179-195, (1996) · Zbl 0860.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.