×

zbMATH — the first resource for mathematics

Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. (English) Zbl 1124.65074
Summary: We present a quadrature-free essentially non-oscillatory finite volume scheme of arbitrary high order of accuracy both in space and time for solving nonlinear hyperbolic systems on unstructured meshes in two and three space dimensions. For high order spatial discretization, a weighted essentially non-oscillatory (WENO) reconstruction technique provides the reconstruction polynomials in terms of a hierarchical orthogonal polynomial basis over a reference element. The Cauchy-Kovalewski procedure applied to the reconstructed data yields for each element a space-time Taylor series for the evolution of the state and the physical fluxes. This Taylor series is then inserted into a special numerical flux across the element interfaces and is subsequently integrated analytically in space and time. Thus, the Cauchy-Kovalewski procedure provides a natural, direct and cost-efficient way to obtain a quadrature-free formulation, avoiding the expensive numerical quadrature arising usually for high order finite volume schemes in three space dimensions. We show numerical convergence results up to sixth order of accuracy in space and time for the compressible Euler equations on triangular and tetrahedral meshes in two and three space dimensions. Furthermore, various two- and three-dimensional test problems with smooth and discontinuous solutions are computed to validate the approach and to underline the non-oscillatory shock-capturing properties of the method.

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics
35L65 Hyperbolic conservation laws
76N15 Gas dynamics (general theory)
Software:
HLLE; HE-E1GODF
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of computational physics, 144, 45-58, (1994) · Zbl 0822.65062
[2] Atkins, H.; Shu, C.W., Quadrature-free implementation of the discontinuous Galerkin method for hyperbolic equations, AIAA journal, 36, 775-782, (1998)
[3] Balsara, D.; Shu, C.W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, Journal of computational physics, 160, 405-452, (2000) · Zbl 0961.65078
[4] T.J. Barth, P.O. Frederickson, Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA paper no. 90-0013, 28th Aerospace Sciences Meeting January 1990.
[5] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, Journal of computational physics, 138, 251-285, (1997) · Zbl 0902.76056
[6] Ben-Artzi, M.; Falcovitz, J., A second-order Godunov-type scheme for compressible fluid dynamics, Journal of computational physics, 55, 1-32, (1984) · Zbl 0535.76070
[7] Bourgeade, A.; LeFloch, P.; Raviart, P.A., An asymptotic expansion for the solution of the generalized Riemann problem. part II: application to the gas dynamics equations, Annales de l’institut Henri Poincaré (C) analyse non linéaire, 6, 437-480, (1989) · Zbl 0703.35106
[8] G. Chiocchia, Exact solutions to transonic and supersonic flows. AGARD Advisory Report AR-211, 1985. · Zbl 0801.76038
[9] Cockburn, B.; Hou, S.; Shu, C.W., The runge – kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Mathematics of computation, 54, 545-581, (1990) · Zbl 0695.65066
[10] Cockburn, B.; Karniadakis, G.E.; Shu, C.W., Discontinuous Galerkin methods, Lecture notes in computational science and engineering, (2000), Springer
[11] Cockburn, B.; Lin, S.Y.; Shu, C.W., TVB runge – kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, Journal of computational physics, 84, 90-113, (1989) · Zbl 0677.65093
[12] Cockburn, B.; Shu, C.W., TVB runge – kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Mathematics of computation, 52, 411-435, (1989) · Zbl 0662.65083
[13] Cockburn, B.; Shu, C.W., The runge – kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Mathematical modelling and numerical analysis, 25, 337-361, (1991) · Zbl 0732.65094
[14] Cockburn, B.; Shu, C.W., The runge – kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of computational physics, 141, 199-224, (1998) · Zbl 0920.65059
[15] Dubiner, M., Spectral methods on triangles and other domains, Journal of scientific computing, 6, 345-390, (1991) · Zbl 0742.76059
[16] M. Dumbser, M. Käser, J. de la Puente, Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in two and three space dimensions, Geophysical Journal International, in press.
[17] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, Journal of computational physics, 221, 693-723, (2007) · Zbl 1110.65077
[18] M. Dumbser, M. Käser, E.F. Toro, An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: Local time stepping and p-adaptivity, Geophysical Journal International, in press.
[19] Dumbser, M.; Moschetta, J.M.; Gressier, J., A matrix stability analysis of the carbuncle phenomenon, Journal of computational physics, 197, 647-670, (2004) · Zbl 1079.76607
[20] M. Dumbser, C.D. Munz, On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes, International Journal of Applied Mathematics and Scientific Computing, in press. · Zbl 1159.35305
[21] Dumbser, M.; Munz, C.D., Building blocks for arbitrary high order discontinuous Galerkin schemes, Journal of scientific computing, 27, 215-230, (2006) · Zbl 1115.65100
[22] R.W. Dyson, Technique for very high order nonlinear simulation and validation. Technical Report TM-2001-210985, NASA, 2001.
[23] Einfeldt, B.; Munz, C.D.; Roe, P.L.; Sjögreen, B., On Godunov-type methods near low densities, Journal of computational physics, 92, 273-295, (1991) · Zbl 0709.76102
[24] Le Floch, P.; Raviart, P.A., An asymptotic expansion for the solution of the generalized Riemann problem. part I: general theory, Annales de l’institut Henri Poincaré (C) analyse non linéaire, 5, 179-207, (1988) · Zbl 0679.35064
[25] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of Mean values on unstructured grids, Journal of computational physics, 144, 194-212, (1998) · Zbl 1392.76048
[26] Godunov, S.K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. sb., 47, 271-306, (1959) · Zbl 0171.46204
[27] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, Journal of computational physics, 71, 231-303, (1987) · Zbl 0652.65067
[28] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R., Uniformly high order accurate essentially non-oscillatory schemes III, Journal of computational physics, 71, 231-303, (1987) · Zbl 0652.65067
[29] Harten, A.; Lax, P.D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM review, 25, 1, 35-61, (1983) · Zbl 0565.65051
[30] Hu, C.; Shu, C.W., Weighted essentially non-oscillatory schemes on triangular meshes, Journal of computational physics, 150, 97-127, (1999) · Zbl 0926.65090
[31] Jiang, G.-S.; Shu, C.W., Efficient implementation of weighted ENO schemes, Journal of computational physics, 202-228, (1996) · Zbl 0877.65065
[32] Karypis, G.; Kumar, V., Multilevel k-way partitioning scheme for irregular graphs, J. parallel distrib. comput., 48, 96-129, (1998)
[33] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, Journal of computational physics, 205, 486-508, (2005) · Zbl 1072.65116
[34] Lax, P.D., Weak solutions of nonlinear hyperbolic equations and their numerical approximation, Comm. pure appl. math., 7, 159-193, (1954) · Zbl 0055.19404
[35] F. Loercher, G. Gassner, C.D. Munz, A discontinuous Galerkin scheme based on a space – time expansion. i. inviscid compressible flow in one space dimension, Journal of Scientific Computing, in press. · Zbl 1143.76047
[36] Moschetta, J.M.; Gressier, J., A cure for the sonic point glitch, International journal of computational fluids dynamics, 13, 143-159, (2000) · Zbl 0983.76060
[37] Ollivier-Gooch, C.; Van Altena, M., A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, Journal of computational physics, 181, 729-752, (2002) · Zbl 1178.76251
[38] Rault, A.; Chiavassa, G.; Donat, R., Shock – vortex interactions at high Mach numbers, Journal of scientific computing, 19, 347-371, (2003) · Zbl 1039.76047
[39] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of computational physics, 43, 357-372, (1981) · Zbl 0474.65066
[40] H. Schardin, in: Proc. VII Int. Cong. High Speed Photg., Darmstadt, O. Helwich Verlag, 1965, pp. 113-119.
[41] Shi, J.; Hu, C.; Shu, C.W., A technique of treating negative weights in WENO schemes, Journal of computational physics, 175, 108-127, (2002) · Zbl 0992.65094
[42] Shu, C.W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, Journal of computational physics, 83, 32-78, (1989) · Zbl 0674.65061
[43] Sonar, T., On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection, Computer methods in applied mechanics and engineering, 140, 157-181, (1997) · Zbl 0898.76086
[44] Stroud, A.H., Approximate calculation of multiple integrals, (1971), Prentice-Hall Inc. Englewood Cliffs, New Jersey · Zbl 0379.65013
[45] Suresh, A.; Huynh, H.T., Accurate monotonicity-preserving schemes with runge – kutta time stepping, Journal of computational physics, 136, 83-99, (1997) · Zbl 0886.65099
[46] Taube, A.; Dumbser, M.; Balsara, D.; Munz, C.-D., Arbitrary high order discontinuous Galerkin schemes for the magnetohydrodynamic equations, Journal of scientific computing, 30, 441-464, (2007) · Zbl 1176.76075
[47] Titarev, V.A.; Toro, E.F., ADER schemes for three-dimensional nonlinear hyperbolic systems, Journal of computational physics, 204, 715-736, (2005) · Zbl 1060.65641
[48] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer · Zbl 0923.76004
[49] Toro, E.F.; Millington, R.C.; Nejad, L.A.M., Towards very high order Godunov schemes, (), 905-938 · Zbl 0989.65094
[50] Toro, E.F.; Spruce, M.; Speares, W., Restoration of the contact surface in the harten-Lax-Van leer Riemann solver, Journal of shock waves, 4, 25-34, (1994) · Zbl 0811.76053
[51] Toro, E.F.; Titarev, V.A., Solution of the generalized Riemann problem for advection-reaction equations, Proc. roy. soc. London, 271-281, (2002) · Zbl 1019.35061
[52] van der Vegt, J.J.W.; van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. general formulation, Journal of computational physics, 182, 546-585, (2002) · Zbl 1057.76553
[53] van der Ven, H.; van der Vegt, J.J.W., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. efficient flux quadrature, Comput. methods appl. mech. engrg., 191, 4747-4780, (2002) · Zbl 1099.76521
[54] van Dyke, M., An album of fluid motion, (2005), The Parabolic Press
[55] van Leer, B., Towards the ultimate conservative difference scheme II: monotonicity and conservation combined in a second order scheme, Journal of computational physics, 14, 361-370, (1974) · Zbl 0276.65055
[56] van Leer, B., Towards the ultimate conservative difference scheme V: A second order sequel to godunov’s method, Journal of computational physics, 32, 101-136, (1979) · Zbl 1364.65223
[57] Wang, Z.J.; Liu, Y., Extension of the spectral volume method to high-order boundary representation, Journal of computational physics, 211, 154-178, (2006) · Zbl 1161.76536
[58] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of computational physics, 54, 115-173, (1984) · Zbl 0573.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.