# zbMATH — the first resource for mathematics

Goodness-of-fit procedures for copula models based on the probability integral transformation. (English) Zbl 1124.62028
I.i.d. copies of a $$d$$-variate random vector $$X=(X_1,\dots,X_d)$$ are observed with CDF $$H$$ which has the copula representation $H(x_1,\dots,x_d)=C(F_1(x),\dots,F_d(x_d)).$ Goodness-of-fit tests are considered for the hypothesis $$H_0:\;C=C_\vartheta$$, $$\vartheta\in O\in R^m$$. The tests are based on comparison of $$K(\vartheta,t)=\mathbf{P}\{H(X)<t\}$$ with the empirical counterpart $$K_n(t)$$. The asymptotic behaviour of the empirical process $K_{n,\vartheta}(t)=\sqrt{n}(K_n(t)-K(\vartheta,t))$ is investigated. The proposed test statistics are $S_n=\int_0^1(K_{n,\vartheta_n}(t))^2k(\vartheta_n,t)dt,\quad T_n=\sup_{0\leq t\leq 1}| K_n(t)|,$ where $$k$$ is the density of $$K(\vartheta,t)$$, and $$\vartheta_n$$ is an estimate for $$\vartheta$$. Two bootstrap procedures are proposed to implement the test. Archimedean, bivariate extreme-value, Fréchet and bivariate Farlie-Gumbel-Morgenstern copulae are considered as examples.

##### MSC:
 62G10 Nonparametric hypothesis testing 62G20 Asymptotic properties of nonparametric inference 62G30 Order statistics; empirical distribution functions 62H05 Characterization and structure theory for multivariate probability distributions; copulas
Full Text:
##### References:
 [1] DOI: 10.1016/0047-259X(78)90063-5 · Zbl 0387.62019 [2] DOI: 10.1093/biomet/83.1.29 · Zbl 0866.62066 [3] DOI: 10.1006/jmva.1996.0048 · Zbl 0862.60020 [4] Belguise O., Bulletin francais d’actuariat 5 pp 135– (2001) [5] DOI: 10.1023/A:1012241624430 · Zbl 1008.62053 [6] DOI: 10.1093/biomet/84.3.567 · Zbl 1058.62516 [7] DOI: 10.1006/jmva.1999.1845 · Zbl 0978.62043 [8] Chen X., Can. J. Statist. 33 pp 389– (2005) [9] DOI: 10.1080/13504860210136721 [10] DOI: 10.2307/2335289 [11] Cook R. D., J. Roy. Statist. Soc. Ser. B 43 pp 210– (1981) [12] Cook R. D., Technometrics 28 pp 123– (1986) [13] T. Dakhli (2004 ). Analyse de la dependance de defaut et evaluation des derives de credit sur portefeuille . Master’s thesis , HEC Montreal, Canada. [14] Embrechts P., Risk management: value at risk and beyond pp 176– (2002) [15] DOI: 10.1007/BF02189866 · Zbl 0444.39003 [16] Frees E. W., North Am. Act. J. 2 pp 1– (1998) · Zbl 1081.62564 [17] Genest C., Can. J. Statist. 14 pp 145– (1986) [18] Genest C., Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models (2005) [19] Genest C., J. Amer. Statist. Assoc. 88 pp 1034– (1993) [20] DOI: 10.1016/S0167-7152(01)00047-5 · Zbl 0982.62056 [21] DOI: 10.2307/2337532 [22] Genest C., North. Am. Act. J. 2 pp 143– (1998) · Zbl 02247037 [23] DOI: 10.1016/j.spl.2005.03.016 · Zbl 1085.62111 [24] Ghoudi K., Asymptotic methods in probability and statistics: a volume in honour of Miklos Csorgo pp 171– (1998) [25] Ghoudi K., Asymptotic methods in stochastics: festschrift for Miklos Csorgo pp 381– (2004) [26] Ghoudi K., Can. J. Statist. 26 pp 187– (1998) [27] DOI: 10.1093/biomet/86.2.381 · Zbl 1054.62601 [28] DOI: 10.1016/j.insmatheco.2005.01.008 · Zbl 1102.91059 [29] Gumbel E. J., Publ. Inst. Statist. Univ. Paris 9 pp 171– (1960) [30] DOI: 10.1111/1467-9965.00136 · Zbl 1072.91022 [31] Joe H., Multivariate models and dependence concepts (1997) · Zbl 0990.62517 [32] Jouini M. N., Oper. Res. 44 pp 444– (1996) [33] DOI: 10.1016/S0167-6687(98)00039-0 · Zbl 0931.62044 [34] DOI: 10.1007/s001840200193 · Zbl 1320.91137 [35] Li D. X., J. Fixed Income 9 pp 43– (2000) [36] Marshall A. W., J. Amer. Statist. Assoc. 83 pp 834– (1988) [37] Nelsen R. B., An introduction to copulas (1999) · Zbl 0909.62052 [38] Oakes D., J. Amer. Statist. Assoc. 84 pp 487– (1989) [39] DOI: 10.1093/biomet/88.1.99 · Zbl 1073.62560 [40] Pickands J., Bull. Int. Statist. Inst. pp 859– (1981) [41] DOI: 10.1093/biomet/85.1.189 · Zbl 0904.62058 [42] Shih J. H., Biometrics 51 pp 1384– (1995) [43] DOI: 10.2307/2336591 [44] Wang W., J. Amer. Statist. Assoc. 95 pp 62– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.