×

zbMATH — the first resource for mathematics

Geometric decay in a QBD process with countable background states with applications to a join-the-shortest-queue model. (English) Zbl 1124.60074
Summary: A geometric tail decay of the stationary distribution has been recently studied for the GI/G/1 type Markov chain with both countable level and background states. This method is essentially the matrix analytic approach, and simplicity is an obvious advantage of this method. However, so far it can only be applied to the \(\alpha\)-positive case (or the jittered case, as referred to in the literature). In this paper, we specialize the GI/G/1 type to a quasi-birth-and-death process. This not only refines some expressions because of the matrix geometric form for the stationary distribution, but also allows us to extend the study, in terms of the matrix analytic method, to non-\(\alpha\)-positive cases. We apply the result to a generalized join-the-shortest-queue model, which only requires elementary computations. The obtained results enable us to discuss when the two queues are balanced in the generalized join-the-shortest-queue model, and establish the geometric tail asymptotics along the direction of the difference between the two queues.

MSC:
60K25 Queueing theory (aspects of probability theory)
60K20 Applications of Markov renewal processes (reliability, queueing networks, etc.)
60F10 Large deviations
90B22 Queues and service in operations research
68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/15326349908807169 · Zbl 0708.60089 · doi:10.1080/15326349908807169
[2] DOI: 10.2307/1427792 · Zbl 0798.60081 · doi:10.2307/1427792
[3] DOI: 10.1016/0304-4149(94)90146-5 · Zbl 0789.60066 · doi:10.1016/0304-4149(94)90146-5
[4] Cohen J.W., Boundary Value Problems in Queueing System Analysis (1983) · Zbl 0515.60092
[5] DOI: 10.1007/BF01189045 · Zbl 0662.60098 · doi:10.1007/BF01189045
[6] DOI: 10.1002/cpa.3160300206 · Zbl 0336.60082 · doi:10.1002/cpa.3160300206
[7] Foley R.D., Annals of Applied Probability 11 pp 569– (2001)
[8] DOI: 10.1081/STM-200046489 · Zbl 1065.60133 · doi:10.1081/STM-200046489
[9] DOI: 10.1007/PL00013360 · Zbl 0985.90024 · doi:10.1007/PL00013360
[10] DOI: 10.1214/aoms/1177704869 · Zbl 0104.36901 · doi:10.1214/aoms/1177704869
[11] Kreyszig E., Introductory Functional Analysis with Applications (1978) · Zbl 0368.46014
[12] DOI: 10.1214/105051604000000477 · Zbl 1078.60078 · doi:10.1214/105051604000000477
[13] Kurkova L.A., Asymptotics of stationary probabilities. Annals of Applied Probability 13 pp 1313– (2003) · Zbl 1039.60082 · doi:10.1214/aoap/1069786501
[14] DOI: 10.1081/STM-120020387 · Zbl 1020.60088 · doi:10.1081/STM-120020387
[15] DOI: 10.1214/aoap/1029962599 · Zbl 0937.60091 · doi:10.1214/aoap/1029962599
[16] Meyn S.P., Markov Chains and Stochastic Stability (1993) · Zbl 0925.60001
[17] DOI: 10.1023/B:QUES.0000021148.33178.0f · Zbl 1056.90035 · doi:10.1023/B:QUES.0000021148.33178.0f
[18] DOI: 10.1239/aap/1103662965 · Zbl 1136.60366 · doi:10.1239/aap/1103662965
[19] DOI: 10.1007/s00186-005-0037-1 · Zbl 1084.60058 · doi:10.1007/s00186-005-0037-1
[20] DOI: 10.1007/s11134-006-7634-4 · Zbl 1099.60063 · doi:10.1007/s11134-006-7634-4
[21] Seneta E., Non-Negative Matrices and Markov Chains,, 2. ed. (1981) · Zbl 1099.60004 · doi:10.1007/0-387-32792-4
[22] DOI: 10.1137/1129036 · Zbl 0557.60078 · doi:10.1137/1129036
[23] DOI: 10.1081/STM-100001397 · Zbl 0985.60074 · doi:10.1081/STM-100001397
[24] Turner S.R.E., Fields Institute Communications 28 pp 95– (2000)
[25] DOI: 10.1239/jap/1014842278 · Zbl 0962.60094 · doi:10.1239/jap/1014842278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.