zbMATH — the first resource for mathematics

Transient analysis of a single server queue with catastrophes, failures and repairs. (English) Zbl 1124.60073
Summary: A transient solution is obtained analytically using continued fractions for the system size in an M/M/1 queueing system with catastrophes, server failures and non-zero repair time. The steady state probability of the system size is present. Some key performance measures, namely, throughput, loss probability and response time for the system under consideration are investigated. Further, reliability and availability of the system are analysed. Finally, numerical illustrations are used to discuss the system performance measures.

60K25 Queueing theory (aspects of probability theory)
90B22 Queues and service in operations research
Full Text: DOI
[1] Atencia I, Moreno P. The discrete time Geo/Geo/1 queue with negative customers and disasters. Comput Oper Res 2004;31(9):1537–48. · Zbl 1107.90330 · doi:10.1016/S0305-0548(03)00107-2
[2] Avi-Itzhak B, Naor P. Some queueing problems with service station subject to breakdown. Oper Res 1963;11:303–20 · Zbl 0114.34202 · doi:10.1287/opre.11.3.303
[3] Birolini A. Quality and reliability of technical systems: theory-practice-management. Heidelberg: Springer; 1997. · Zbl 0884.62107
[4] Bruni C, D’Andrea P, Mocci U, Scoglio C. Optimal capacity management of virtual paths in an ATM network. In: IEEE Globecom 94 Proceedings; 1994.
[5] Bonomi F, Mitra D, Seery J. Adaptive algorithms for feedback-based flow control in high speed wide-area ATM networks. IEEE J Sel Areas Commun 1995;13(7):1267–83. · doi:10.1109/49.414645
[6] Chao X. A queueing network model with catastrophes and product form solution. OR Lett 1995;18:75–9. · Zbl 0857.90042
[7] Chao X, Miyazawa M, Pinedo M. Queueing networks: customers, signals and product form solutions. Chichester: Wiley; 1999. · Zbl 0936.90010
[8] Chen A, Renshaw E. The M/M/1 queue with mass exodus and mass arrivals when empty. J Appl Probab 1997;34:192–207. · Zbl 0876.60079 · doi:10.2307/3215186
[9] Di Crescenzo A, Giorno V, Nobile AG, Ricciardi LM. On the M/M/1 queue with catastrophes and its continuous approximation. Queueing Syst 2003;43:329–47. · Zbl 1016.60080 · doi:10.1023/A:1023261830362
[10] Gautam N. Pricing issues in web hosting services. J Revenue Pricing Manag 2005;4(1):7–23. · doi:10.1057/palgrave.rpm.5170126
[11] Gelenbe E, Pujolle G. Introduction to queueing networks. Chichester: Wiley; 1998. · Zbl 0654.60079
[12] Harrison PG, Patel NM. Performance modeling of communication networks and computer architectures. Reading: Addison–Wesley; 1993.
[13] Haverkort BR, Marie R, Rubino G, Trivedi K. Performability modeling. New York: Wiley; 2001.
[14] Henderson W. Queueing networks with negative customers and negative queue length. J Appl Probab 1993;30:931–42. · Zbl 0787.60115 · doi:10.2307/3214523
[15] Jain G, Sigman K. A Pollaczek-Khinchine formula for M/G/1 queues with disasters. J Appl Probab 1996;33:1191–200. · Zbl 0867.60082 · doi:10.2307/3214996
[16] Krishna Kumar B, Arivudainambi D. Transient solution of an M/M/1 queue with catastrophes. Comput Math Appl 2000;40:1233–40. · Zbl 0962.60096 · doi:10.1016/S0898-1221(00)00234-0
[17] Lavenberg SS. Computer performance modelling handbook. New York: Academic; 1983. · Zbl 0601.68005
[18] Nagarajan R, Kurose J. On defininig, computing and quaranteeing quality-of-service in high-speed networks. In: Proc. of INFOCOM’ 92. vol 2. Florence, Italy; 1992. p. 2016–25.
[19] Neuts MF, Lucantoni DM. A Markovian queue with N servers subjects to breakdowns and repairs. Manag Sci 1979;25(9):849–61. · doi:10.1287/mnsc.25.9.849
[20] Takagi H. Queueing analysis: a foundation of performance evaluation, vacation and priority systems. vol 1. Amsterdam: North-Holland; 1991. · Zbl 0744.60114
[21] Towsley D, Tripathi SK. A single server priority queue with server failures and queue flushing. OR Lett 1991;10:353–62. · Zbl 0737.60086
[22] Vinod B. Unreliable queueing systems. Comput Oper Res 1985;12:323–40. · Zbl 0608.90030 · doi:10.1016/0305-0548(85)90031-0
[23] Wartenhorst P. N parallel queueing systems with server breakdown and repair. Eur J Oper Res 1995;82:302–22. · Zbl 0905.90080 · doi:10.1016/0377-2217(94)00266-F
[24] Walrand J, Varaiya P. High-performance communication networks. San Francisco: Kaufmann; 2001. · Zbl 0997.68546
[25] Widder DV. The Laplace transform. Princeton: Princeton University Press; 1946.
[26] Yanagiya M, Takahashi Y, Takahashi H. Trans IEICE 1990;73(7):1181–6.
[27] Yin N, Hluchyj M. On closed-loop rate control for ATM cell relay networks. In: Proc. of IEEE INFOCOM’ 94; 1994. p. 99–108.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.