×

On hypercentral units in integral group rings. (English) Zbl 1124.16023

Let \(G\) be a group. An integral domain of characteristic \(0\) is called \(G\)-adapted if whenever \(G\) has an element of prime order \(p\), then \(p\) is not invertible in \(R\). Let \(R\) be such a \(G\)-adapted ring and let \(U\) be the group of units of the group ring \(RG\). Let \(Z_n(U)\) be the \(n\)-th term of the upper central series of \(U\), and let \(Z_\infty(U)\) be the union of all the \(Z_n(U)\).
The main result of the paper under review is the statement that all elements in \(Z_\infty(U)\) normalize \(G\). The paper contains many intermediate results which are interesting in their own right. Some of them come from non published parts of the first author’s Habilitationsschrift. Moreover, in case some additional hypotheses are satisfied, then a more detailed structure theory is developed.

MSC:

16U60 Units, groups of units (associative rings and algebras)
20C07 Group rings of infinite groups and their modules (group-theoretic aspects)
20F14 Derived series, central series, and generalizations for groups
16S34 Group rings
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1080/00927879208824548 · Zbl 0784.16020
[2] DOI: 10.1080/00927879308824756 · Zbl 0788.16024
[3] DOI: 10.1016/0021-8693(66)90018-4 · Zbl 0141.02401
[4] Bovdi A. A., Sibirsk. Mat. Z. 9 pp 495– (1968)
[5] Bovdi A. A., II. Sibirsk. Mat. Z. 11 pp 492– (1970)
[6] DOI: 10.2307/2034735 · Zbl 0132.27501
[7] DOI: 10.1081/AGB-200036784 · Zbl 1070.16027
[8] Farkas D. R., Canad. Math. Bull. 43 pp 60– (2000) · Zbl 0949.16032
[9] DOI: 10.1017/S1446788700014051 · Zbl 1102.20023
[10] DOI: 10.1006/jabr.2001.8760 · Zbl 0993.20017
[11] Hertweck M., Ann. of Math. 154 pp 115– (2) · Zbl 0990.20002
[12] DOI: 10.1016/S0022-4049(00)00167-5 · Zbl 0987.16015
[13] DOI: 10.1007/s006050200029 · Zbl 1004.20011
[14] DOI: 10.1007/s002090100318 · Zbl 1047.20020
[15] DOI: 10.1016/0022-4049(87)90028-4 · Zbl 0624.20024
[16] DOI: 10.1006/jabr.1999.7989 · Zbl 0947.16015
[17] DOI: 10.1515/jgth.2003.008 · Zbl 1032.16027
[18] Jespers E., Mat. Contemp. 21 pp 117– (2001)
[19] DOI: 10.1006/jabr.2001.8724 · Zbl 1063.16036
[20] DOI: 10.1090/S0002-9939-96-03398-9 · Zbl 0846.16028
[21] DOI: 10.1081/AGB-120029897 · Zbl 1072.20030
[22] DOI: 10.1017/S0004972700006195 · Zbl 0419.16005
[23] Li Yuanlin, Canad. J. Math. 50 pp 401– (1998) · Zbl 0912.16013
[24] DOI: 10.1090/S0002-9939-01-05848-8 · Zbl 0968.16015
[25] DOI: 10.1081/AGB-120022220 · Zbl 1034.16037
[26] DOI: 10.1081/AGB-200061026 · Zbl 1078.16029
[27] DOI: 10.1080/00927879908826692 · Zbl 0943.16012
[28] Mazur M., Exposition. Math. 13 pp 433– (1995)
[29] DOI: 10.1006/jabr.1998.7629 · Zbl 0921.16018
[30] DOI: 10.1016/S0021-8693(02)00156-4 · Zbl 1017.16024
[31] DOI: 10.1081/AGB-120021903 · Zbl 1039.16034
[32] DOI: 10.1016/0022-4049(95)90113-Y · Zbl 0835.16020
[33] Saksonov A. I., I. Publ. Math. Debrecen 18 pp 187– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.