×

zbMATH — the first resource for mathematics

SMS-EMOA: multiobjective selection based on dominated hypervolume. (English) Zbl 1123.90064
Summary: The hypervolume measure (or \(\mathcal S\) metric) is a frequently applied quality measure for comparing the results of evolutionary multiobjective optimisation algorithms (EMOA). The new idea is to aim explicitly for the maximisation of the dominated hypervolume within the optimisation process. A steady-state EMOA is proposed that features a selection operator based on the hypervolume measure combined with the concept of non-dominated sorting. The algorithm’s population evolves to a well-distributed set of solutions, thereby focussing on interesting regions of the Pareto front. The performance of the devised \(\mathcal S\) metric selection EMOA (SMS-EMOA) is compared to state-of-the-art methods on two- and three-objective benchmark suites as well as on aeronautical real-world applications.

MSC:
90C29 Multi-objective and goal programming
Software:
SMS-EMOA; SPEA2
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Deb, K., Multi-objective optimization using evolutionary algorithms, (2001), John Wiley & Sons Chichester, UK · Zbl 0970.90091
[2] Coello Coello, C.A.; Van Veldhuizen, D.A.; Lamont, G.B., Evolutionary algorithms for solving multi-objective problems, (2002), Kluwer Academic Publishers New York · Zbl 1130.90002
[3] Zitzler, E.; Thiele, L., Multiobjective optimization using evolutionary algorithms - A comparative study, (), 292-301
[4] E. Zitzler, Evolutionary algorithms for multiobjective optimization: methods and applications, Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, 1999.
[5] Fleischer, M., The measure of Pareto optima. applications to multi-objective metaheuristics, (), 519-533 · Zbl 1036.90530
[6] Knowles, J.D.; Corne, D.W.; Fleischer, M., Bounded archiving using the Lebesgue measure, (), 2490-2497
[7] Emmerich, M.; Beume, N.; Naujoks, B., An EMO algorithm using the hypervolume measure as selection criterion, (), 62-76 · Zbl 1109.68595
[8] Knowles, J.; Corne, D., Properties of an adaptive archiving algorithm for storing nondominated vectors, IEEE transactions on evolutionary computation, 7, 2, 100-116, (2003)
[9] Deb, K.; Mohan, M.; Mishra, S., Towards a quick computation of well-spread Pareto-optimal solutions, (), 222-236 · Zbl 1036.90525
[10] K. Deb, M. Mohan, S. Mishra, A fast multi-objective evolutionary algorithm for finding well-spread Pareto-optimal solutions, KanGAL report 2003002, Indian Institute of Technology, Kanpur, India, 2003.
[11] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V. G. da Fonseca, Performance assessment of multiobjective optimizers: An analysis and review, TIK-Report 139, Swiss Federal Institute of Technology (ETH), Zürich, 2002.
[12] Huband, S.; Hingston, P.; While, L.; Barone, L., An evolution strategy with probabilistic mutation for multi-objective optimisation, (), 2284-2291
[13] Zitzler, E.; Künzli, S., Indicator-based selection in multiobjective search, (), 832-842
[14] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, 6, 2, 182-197, (2002)
[15] Goldberg, D., Genetic algorithms in search, optimization and machine learning, (1989), Addison-Wesley Reading, MA · Zbl 0721.68056
[16] Naujoks, B.; Beume, N.; Emmerich, M., Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces, Congress on evolutionary computation (CEC 2005), vol. 2, (2005), IEEE Press Piscataway, NJ, pp. 1282-1289
[17] While, L., A new analysis of the lebmeasure algorithm for calculating the hypervolume, (), 326-340 · Zbl 1109.68639
[18] J. Knowles, Local search and hybrid evolutionary algorithms for Pareto optimization, Ph.D. Thesis, University of Reading, Reading, UK, 2002.
[19] E. Zitzler, Hypervolume metric calculation, Computer Engineering and Networks Laboratory (TIK), Zürich, 2001. Available from: <ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c>.
[20] While, L.; Bradstreet, L.; Barone, L.; Hingston, P., Heuristics for optimising the calculation of hypervolume for multi-objective optimisation problems, (), 2225-2232
[21] Zitzler, E.; Laumanns, M.; Thiele, L., SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization, (), 95-100
[22] Zitzler, E.; Deb, K.; Thiele, L., Comparison of multiobjective evolutionary algorithms: empirical results, Evolutionary computation, 8, 2, 173-195, (2000)
[23] M. Emmerich, A rigorous analysis of two bi-criteria problem families with scalable curvature of the Pareto fronts, Technical Report LIACS TR 2005-05, Leiden Institute on Advanced Computer Science, Leiden, NL, 2005.
[24] Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E., Scalable multi-objective optimization test problems, (), 825-830
[25] Sacks, J.; Welch, W.J.; Mitchell, W.J.; Wynn, H.P., Design and analysis of computer experiments, Statistical science, 4, 409-435, (1989) · Zbl 0955.62619
[26] Emmerich, M.; Naujoks, B., Metamodel assisted multiobjective optimisation strategies and their application in airfoil design, (), 249-260
[27] M. Emmerich, B. Naujoks, Metamodel-assisted multi-objective optimisation with implicit constraints and their application in airfoil design, in: Proc. Int. Conf. ERCOFTAC’04, Athens (CD-ROM), CIMNE, Barcelona, Spain, 2004.
[28] Beyer, H.-G.; Schwefel, H.-P., Evolution strategies - A comprehensive introduction, Natural computing, 1, 1, 3-52, (2002) · Zbl 1014.68134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.