×

zbMATH — the first resource for mathematics

Turbulent spots in the asymptotic suction boundary layer. (English) Zbl 1123.76023
Summary: Amplitude thresholds for transition of localized disturbances, their breakdown to turbulence and the development of turbulent spots in the asymptotic suction boundary layer are studied using direct numerical simulations. A parametric study of horizontal scales of the initial disturbance is performed, and disturbances that lead to the highest growth under the conditions investigated are used in the simulations. The Reynolds-number dependence of the threshold amplitude of a localized disturbance is investigated for \(500\leqslant Re \leqslant 1200\), based on the free-stream velocity and the displacement thickness. It is found that the threshold amplitude scales as \(Re^{ - 1.5}\) for the considered Reynolds numbers. For \(Re \leqslant 367\), the localized disturbance does not lead to a turbulent spot, and this provides an estimate of the critical Reynolds number for the onset of turbulence. When the localized disturbance breaks down to a turbulent spot, it happens through the development of hairpin and spiral vortices. The shape and spreading rate of the turbulent spot are determined for \(Re = 500\), 800 and 1200. Flow visualizations reveal that the turbulent spot takes a bullet-shaped form that becomes more distinct for higher Reynolds numbers. Long streaks extend in front of the spot, and in its wake a calm region exists. The spreading rate of the turbulent spot is found to increase with increasing Reynolds number.

MSC:
76F06 Transition to turbulence
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s00348-003-0644-7 · doi:10.1007/s00348-003-0644-7
[2] Chapman, J. Fluid Mech. 451 pp 35– (2002)
[3] Schrauf, J. Aircraft 41 pp 224– (2004)
[4] DOI: 10.1017/S0022112088003295 · doi:10.1017/S0022112088003295
[5] DOI: 10.1017/S0022112098001323 · Zbl 0927.76029 · doi:10.1017/S0022112098001323
[6] DOI: 10.1017/S0022112078001809 · doi:10.1017/S0022112078001809
[7] DOI: 10.1017/S0022112002001301 · Zbl 1042.76021 · doi:10.1017/S0022112002001301
[8] DOI: 10.1016/j.euromechflu.2006.07.003 · Zbl 1150.76020 · doi:10.1016/j.euromechflu.2006.07.003
[9] DOI: 10.1017/S0022112090003391 · doi:10.1017/S0022112090003391
[10] DOI: 10.1017/S0022112081002966 · doi:10.1017/S0022112081002966
[11] DOI: 10.1017/S002211209000338X · doi:10.1017/S002211209000338X
[12] DOI: 10.1137/S1064827596310251 · Zbl 0930.35015 · doi:10.1137/S1064827596310251
[13] DOI: 10.1063/1.869665 · Zbl 1185.76575 · doi:10.1063/1.869665
[14] Mathew, Current Sci. 79 pp 816– (2000)
[15] DOI: 10.1007/s001620050109 · Zbl 0943.76026 · doi:10.1007/s001620050109
[16] DOI: 10.1063/1.869199 · Zbl 1185.76574 · doi:10.1063/1.869199
[17] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[18] DOI: 10.1063/1.865884 · doi:10.1063/1.865884
[19] DOI: 10.1017/S0022112091003130 · Zbl 0850.76256 · doi:10.1017/S0022112091003130
[20] DOI: 10.1063/1.2136900 · Zbl 1188.76078 · doi:10.1063/1.2136900
[21] DOI: 10.1017/S0022112094004234 · Zbl 0813.76024 · doi:10.1017/S0022112094004234
[22] DOI: 10.1017/S0022112090003469 · doi:10.1017/S0022112090003469
[23] DOI: 10.1146/annurev.fluid.30.1.1 · doi:10.1146/annurev.fluid.30.1.1
[24] Jeong, J. Fluid Mech. 332 pp 185– (1997)
[25] DOI: 10.1103/PhysRevLett.91.244502 · doi:10.1103/PhysRevLett.91.244502
[26] DOI: 10.1093/qjmam/28.3.341 · Zbl 0321.76021 · doi:10.1093/qjmam/28.3.341
[27] DOI: 10.1017/S0022112093001429 · Zbl 0773.76030 · doi:10.1017/S0022112093001429
[28] DOI: 10.1063/1.866067 · doi:10.1063/1.866067
[29] DOI: 10.1017/S0022112004000011 · Zbl 1107.76032 · doi:10.1017/S0022112004000011
[30] Henningson, J. Fluid Mech. 228 pp 183– (1991)
[31] DOI: 10.1063/1.1775222 · Zbl 1187.76587 · doi:10.1063/1.1775222
[32] DOI: 10.1017/S0022112079000756 · doi:10.1017/S0022112079000756
[33] DOI: 10.1017/S0022112087001289 · doi:10.1017/S0022112087001289
[34] DOI: 10.1017/S0022112076002747 · doi:10.1017/S0022112076002747
[35] DOI: 10.1017/S0022112004002770 · Zbl 1142.76303 · doi:10.1017/S0022112004002770
[36] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[37] DOI: 10.1016/S0997-7546(03)00033-5 · Zbl 1119.76324 · doi:10.1016/S0997-7546(03)00033-5
[38] DOI: 10.1017/S0022112092001046 · doi:10.1017/S0022112092001046
[39] DOI: 10.1017/S0022112003003926 · Zbl 1049.76508 · doi:10.1017/S0022112003003926
[40] DOI: 10.1063/1.868363 · doi:10.1063/1.868363
[41] Emmons, J. Aero. Sci. 18 pp 490– (1951) · doi:10.2514/8.2010
[42] DOI: 10.1063/1.868804 · Zbl 1023.76556 · doi:10.1063/1.868804
[43] DOI: 10.1017/S0022112060001079 · Zbl 0091.42501 · doi:10.1017/S0022112060001079
[44] DOI: 10.1017/S0022112095002102 · doi:10.1017/S0022112095002102
[45] DOI: 10.1063/1.868631 · doi:10.1063/1.868631
[46] Schumacher, Phys. Rev. 63 pp 046307– (2001) · doi:10.1103/PhysRevA.63.022308
[47] DOI: 10.1017/S0022112082002006 · doi:10.1017/S0022112082002006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.