zbMATH — the first resource for mathematics

Recurrence of travelling waves in transitional pipe flow. (English) Zbl 1123.76022
Summary: The recent theoretical discovery of families of unstable travelling-wave solutions in pipe flow at Reynolds numbers lower than the transitional range, naturally raises the question of their relevance to the turbulent transition process. Here, a series of numerical experiments are conducted in which we look for the spatial signature of these travelling waves in transitionary flows. Working within a periodic pipe of 5\(D\) (diameters) length, we find that travelling waves with low wall shear stresses (lower branch solutions) are on a surface in phase space which separates initial conditions which uneventfully relaminarize and those which lead to a turbulent evolution. This dividing surface (a separatrix if turbulence is a sustained state) is then minimally the union of the stable manifolds of all these travelling waves. Evidence for recurrent travelling-wave visits is found in both 5\(D\) and 10\(D\) long periodic pipes, but only for those travelling waves with low-to-intermediate wall shear stress and for less than about 10% of the time in turbulent flow at \(Re = 2400\). Given this, it seems unlikely that the mean turbulent properties such as wall shear stress can be predicted as an expansion solely over the travelling waves in which their individual properties are appropriately weighted. Instead the onus is on isolating further dynamical structures such as periodic orbits and including them in any such expansion.

76F06 Transition to turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI
[1] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072
[2] DOI: 10.1103/PhysRevLett.98.014501
[3] Waleffe, J. Fluid Mech. 508 pp 333– (2001)
[4] DOI: 10.1103/PhysRevLett.81.4140
[5] DOI: 10.1016/j.fluiddyn.2005.09.001 · Zbl 1178.76177
[6] DOI: 10.1017/S0022112003003768 · Zbl 1034.76014
[7] DOI: 10.1103/PhysRevLett.96.174101
[8] DOI: 10.1088/0951-7715/18/6/R01 · Zbl 1084.76033
[9] DOI: 10.1017/S0022112001006243 · Zbl 0996.76034
[10] DOI: 10.1063/1.1890428 · Zbl 1187.76260
[11] DOI: 10.1063/1.1825451 · Zbl 1187.76248
[12] DOI: 10.1017/S0022112001004050 · Zbl 1022.76022
[13] DOI: 10.1103/PhysRevLett.91.224502
[14] DOI: 10.1143/JPSJ.70.703
[15] DOI: 10.1017/S002211209400131X
[16] DOI: 10.1038/nature05089
[17] DOI: 10.1146/annurev.fluid.39.050905.110308
[18] DOI: 10.1103/PhysRevLett.95.214502
[19] DOI: 10.1126/science.1100393
[20] DOI: 10.1103/PhysRevLett.61.2729
[21] DOI: 10.1017/S0022112004008134 · Zbl 1116.76362
[22] DOI: 10.1017/S0022112097005818 · Zbl 0898.76028
[23] DOI: 10.1017/S0022112092000892 · Zbl 0744.76052
[24] DOI: 10.1088/0951-7715/3/2/006
[25] DOI: 10.1088/0951-7715/3/2/005 · Zbl 0702.58064
[26] Schmiegel, Phys. Rev. Lett. 277 pp 197– (1997)
[27] DOI: 10.1103/PhysRevLett.96.094501
[28] DOI: 10.1017/S0022112080002066 · Zbl 0418.76036
[29] DOI: 10.1002/fld.1122 · Zbl 1092.76046
[30] DOI: 10.1017/S0022112090000829
[31] DOI: 10.1017/S0022112073001576
[32] DOI: 10.1063/1.1566753 · Zbl 1186.76556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.