×

Absorbent tuples of aggregation operators. (English) Zbl 1123.68124

Summary: We generalize the notion of an absorbent element of aggregation operators. Our construction involves tuples of values that decide the result of aggregation. Absorbent tuples are useful to model situations in which certain decision makers may decide the outcome irrespective of the opinion of the others. We examine the most important classes of aggregation operators in respect to their absorbent tuples, and also construct new aggregation operators with predefined sets of absorbent tuples.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Aczél, J., On Mean values, Bull. amer. math. soc., 54, (1948) · Zbl 0030.02702
[2] Beliakov, G., Geometry and combinatorics of the cutting angle method, Optimization, 52, 4-5, 379-394, (2003) · Zbl 1055.65071
[3] Beliakov, G., The cutting angle method—a tool for constrained global optimization, Optim. methods software, 19, 137-151, (2004) · Zbl 1054.90055
[4] Beliakov, G., Monotonicity preserving approximation of multivariate scattered data, Bit, 45, 653-677, (2005) · Zbl 1092.65005
[5] Beliakov, G., Interpolation of Lipschitz functions, J. comput. appl. math., 196, 20-44, (2006) · Zbl 1098.65007
[6] G. Beliakov, T. Calvo, Identification of general and double aggregation operators using monotone smoothing, in: E. Montseny, P. Sobrevilla (Eds.), EUSFLAT 2005, Barcelona, Spain, European Society for Fuzzy Logic and Technology, 2005, pp. 937-942.
[7] G. Beliakov, T. Calvo, J. Lazaro, Pointwise construction of Lipschitz aggregation operators with specific properties, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 2007, in press. · Zbl 1120.68099
[8] Calvo, T.; De Baets, B.; Fodor, J., The functional equations of Frank and alsina for uninorms and nullnorms, Fuzzy sets and systems, 120, 385-394, (2001) · Zbl 0977.03026
[9] Calvo, T.; Kolesarova, A.; Komornikova, M.; Mesiar, R., Aggregation operators: properties, classes and construction methods, (), 3-104 · Zbl 1039.03015
[10] L. Cranor, Declared-strategy voting: an instrument for group decision making, D.Sc. thesis, Washington University, 1996.
[11] Dubois, D.; Prade, H., A review of fuzzy set aggregation connectives, Inform. sci., 36, 85-121, (1985) · Zbl 0582.03040
[12] Dubois, D.; Prade, H., On the use of aggregation operations in information fusion processes, Fuzzy sets and systems, 142, 143-161, (2004) · Zbl 1091.68107
[13] Farrell, D., Electoral systems: A comparative overview, (2001), St. Martin’s Press New York
[14] Fodor, J.; Yager, R.; Rybalov, A., Structure of uninorms, Internat. J. uncertain. fuzziness knowledge-based systems, 5, 411-427, (1997) · Zbl 1232.03015
[15] Klement, E.P.; Mesiar, R.; Pap, E., On the relationship of associative compensatory operators to triangular norms and conorms, Internat. J. uncertain. fuzziness knowledge-based systems, 4, 2, 129-144, (1996) · Zbl 1232.03041
[16] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer Academic Publishers Dordrecht · Zbl 0972.03002
[17] Mas, M.; Mayor, G.; Torrens, J., T-operators, Internat. J. uncertain. fuzziness knowledge-based systems, 7, 31-50, (1999) · Zbl 1087.03515
[18] Mas, M.; Mesiar, R.; Monserrat, M.; Torrens, J., Aggregation operators with annihilator, Internat. J. gen. systems, 34, 17-38, (2005) · Zbl 1081.68107
[19] Mesiar, R., Compensatory operators based on triangular norms, (), 131-135
[20] Mesiar, R.; Komornikova, M., Triangular norm-based aggregation of evidence under fuzziness, (), 11-35
[21] Nelsen, R.B., An introduction to copulas, (1998), Springer Berlin
[22] Pradera, A.; Trillas, E.; Calvo, T., A general class of triangular norm-based aggregation operators: quasi-linear T-S operators, Internat. J. approx. reason., 30, 57-72, (2002) · Zbl 1006.68160
[23] Roubens, M.; Vincke, P., Preference modeling, (1989), Springer Berlin
[24] Traub, J.F.; Wozniakowski, H., A general theory of optimal algorithms, (1980), Academic Press New York · Zbl 0441.68046
[25] Yager, R., Generalized OWA aggregation operators, Fuzzy optim. decision making, 3, 93-107, (2004) · Zbl 1057.90032
[26] Yager, R.; Rybalov, A., Uninorm aggregation operators, Fuzzy sets and systems, 80, 111-120, (1996) · Zbl 0871.04007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.