×

Vlasov models for laser-plasma interaction. (English) Zbl 1121.82356

Summary: In this paper we discuss Vlasov models and Vlasov simulations to study short pulse high intensity laser-plasma interaction. For these studies analytical calculations are performed from more simple fluid models: nonlinear dispersion relations, growth rates, envelope models, Manley-Rowe partition, etc. For a full kinetic description numerical codes are necessary; among different methods particle in cell or PIC codes play a central role. On the other hand, Vlasov codes solve the Vlasov equation as a partial differential equation (PDE) in phase space. Due to their excellent resolution, they have proven to be a useful tool to study the nonlinear resonant wave-particle interaction, which may be important in laser-plasma studies. A disadvantage is the need of large memory to ensure correct discretization in phase space. The goal of the paper is to give some insight into the question of choosing between PIC and Vlasov codes, both from a numerical and a physical point of view. Some pedagogical examples will be given to explain to the reader how to select the problems in which Vlasov models and Vlasov simulations could be pertinent.

MSC:

82D10 Statistical mechanics of plasmas
76W05 Magnetohydrodynamics and electrohydrodynamics
76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akhiezer A. I., Sov. Phys. JETP 3 pp 696– (1956)
[2] DOI: 10.1063/1.874102 · doi:10.1063/1.874102
[3] Bertrand P., Phys. Fluids 15 pp 1275– (1972) · doi:10.1063/1.1694077
[4] Bertrand P., Phys. Rev. E 49 pp 5656– (1994) · doi:10.1103/PhysRevE.49.5656
[5] Bertrand P., Phys. Plasmas 2 pp 3116– (1995) · doi:10.1063/1.871144
[6] Bertrand P., Phys. Fluids 19 pp 1183– (1976) · doi:10.1063/1.861600
[7] DOI: 10.1109/27.509991 · doi:10.1109/27.509991
[8] DOI: 10.1016/S0010-4655(02)00694-X · Zbl 1196.82108 · doi:10.1016/S0010-4655(02)00694-X
[9] DOI: 10.1006/jcph.2001.6818 · Zbl 0998.65138 · doi:10.1006/jcph.2001.6818
[10] Forslund D. W., Phys. Fluids 18 pp 1017– (1975) · doi:10.1063/1.861249
[11] Ghizzo A., Phys. Plasmas 3 pp 650– (1996) · doi:10.1063/1.871892
[12] Ghizzo A., J. Comput. Phys. 186 pp 47– (2003) · Zbl 1072.78524 · doi:10.1016/S0021-9991(03)00010-X
[13] Ghizzo A., J. Comput. Phys. 90 pp 431– (1995) · Zbl 0702.76080 · doi:10.1016/0021-9991(90)90174-Y
[14] Guérin S., Phys. Plasmas 2 pp 2807– (1995) · doi:10.1063/1.871178
[15] Johnston T. W., APS, Plasma Phys. Division (2002)
[16] Johnston T. W., Phys. Fluids B 4 pp 2523– (1992) · doi:10.1063/1.860168
[17] DOI: 10.1016/S0021-9991(95)90136-1 · Zbl 0840.76098 · doi:10.1016/S0021-9991(95)90136-1
[18] DOI: 10.1006/jcph.2002.7071 · Zbl 1001.78025 · doi:10.1006/jcph.2002.7071
[19] Navet M., Phys. Lett. 34 pp 117– (1971) · doi:10.1016/0375-9601(71)90232-5
[20] Réveillé T., Phys. Fluids B 4 pp 2665– (1992) · doi:10.1063/1.860468
[21] Sonnendrücker E., J. Compt. Phys. 149 pp 201– (1998) · Zbl 0934.76073 · doi:10.1006/jcph.1998.6148
[22] Special Issue on Laser and Plasma Accelerators. 2000.IEEE Trans. on Plasma Sci., 28
[23] DOI: 10.1103/PhysRevLett.43.267 · doi:10.1103/PhysRevLett.43.267
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.