×

zbMATH — the first resource for mathematics

Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. (English) Zbl 1121.80342
Summary: A generalized formulation of the characteristic boundary conditions for compressible reacting flows is proposed. The new and improved approach resolves a number of lingering issues of spurious solution behaviour encountered in turbulent reacting flow simulations in the past. This is accomplished (a) by accounting for all the relevant terms in the determination of the characteristic wave amplitudes and (b) by accommodating a relaxation treatment for the transverse gradient terms with the relaxation coefficient properly determined by the low Mach number asymptotic expansion. The new boundary conditions are applied to a comprehensive set of test problems including: vortex-convection; turbulent inflow; ignition front propagation; non-reacting and reacting Poiseuille flows; and counterflow cases. It is demonstrated that the improved boundary conditions perform consistently superior to existing approaches, and result in robust and accurate solutions with minimal acoustic wave interactions at the boundary in hostile turbulent combustion simulation conditions.

MSC:
80A32 Chemically reacting flows
76F65 Direct numerical and large eddy simulation of turbulence
Software:
PREMIX
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1090/S0025-5718-1977-0436612-4 · doi:10.1090/S0025-5718-1977-0436612-4
[2] DOI: 10.1016/0021-9991(79)90100-1 · Zbl 0397.35043 · doi:10.1016/0021-9991(79)90100-1
[3] DOI: 10.1016/0021-9991(80)90174-6 · Zbl 0425.76045 · doi:10.1016/0021-9991(80)90174-6
[4] Rudy D. H., Computers and Fluids 9 pp 327– (1981) · Zbl 0452.76042 · doi:10.1016/0045-7930(81)90005-0
[5] DOI: 10.1016/0021-9991(87)90041-6 · Zbl 0619.76089 · doi:10.1016/0021-9991(87)90041-6
[6] DOI: 10.1016/0021-9991(90)90152-Q · Zbl 0701.76070 · doi:10.1016/0021-9991(90)90152-Q
[7] DOI: 10.1016/0021-9991(92)90046-2 · Zbl 0766.76084 · doi:10.1016/0021-9991(92)90046-2
[8] Strikwerda J. C., Communication on Pure and Applied Mathematics 9 pp 797– (1977) · Zbl 0351.35051 · doi:10.1002/cpa.3160300606
[9] Gustafsson B., SIAM Journal on Applied Mathematics 35 pp 343– (1987) · Zbl 0389.76050 · doi:10.1137/0135030
[10] DOI: 10.1137/0135035 · Zbl 0397.35067 · doi:10.1137/0135035
[11] Halpern L., SIAM Journal on Mathematical Analysis 22 pp 1256– (1991) · Zbl 0772.35003 · doi:10.1137/0522081
[12] DOI: 10.1137/0725018 · Zbl 0701.76032 · doi:10.1137/0725018
[13] Baum M., Journal of Computational Physics 176 pp 247– (1994)
[14] DOI: 10.1006/jcph.2002.6990 · Zbl 1130.76417 · doi:10.1006/jcph.2002.6990
[15] Poinsot T. J., Theoretical and Numerical Combustion (2001)
[16] DOI: 10.1016/S0021-9991(03)00328-0 · Zbl 1134.76736 · doi:10.1016/S0021-9991(03)00328-0
[17] DOI: 10.1080/13647830500307378 · Zbl 1086.80006 · doi:10.1080/13647830500307378
[18] Nicoud F., Journal of Computational Physics 148 pp 418– (1999) · Zbl 0976.76059 · doi:10.1006/jcph.1998.6131
[19] Valorani M., Numerical Methods for Partial Differential Equations 14 pp 781– (1998) · Zbl 0934.76063 · doi:10.1002/(SICI)1098-2426(199811)14:6<781::AID-NUM4>3.0.CO;2-M
[20] Prosser, R. and Schlüter, J. Toward improved boundary conditions DNS and LES of turbulent subsonic flows. Proceedings of Summer Program. pp.395–410. Center for Turbulence Research, Stanford University.
[21] Prosser R., Journal of Computational Physics 207 pp 736– (2005) · Zbl 1213.76142 · doi:10.1016/j.jcp.2005.01.027
[22] Mueller M. A., Proceedings of Combustion Institute 27 pp 177– (1998) · doi:10.1016/S0082-0784(98)80403-7
[23] Müller B., 30th Computational Fluid Dynamics Lecture Series 1999–03, in: Low Mach number asymptotics of the Navier–Stokes equations and numerical implications (1999)
[24] DOI: 10.2514/3.10521 · doi:10.2514/3.10521
[25] DOI: 10.1016/j.proci.2004.08.052 · doi:10.1016/j.proci.2004.08.052
[26] Hinze J. O., Turbulence,, 2. ed. (1975)
[27] DOI: 10.1146/annurev.fluid.36.050802.121930 · Zbl 1076.76040 · doi:10.1146/annurev.fluid.36.050802.121930
[28] Hirsch C., Numerical Computation of Internal and External Flow 2 (1990) · Zbl 0742.76001
[29] Kee R. J., A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.