zbMATH — the first resource for mathematics

Meshless local radial basis function collocation method for convective-diffusive solid-liquid phase change problems. (English) Zbl 1121.80014
Summary: The purpose of this paper is to develop a new local radial basis function collocation method (LRBFCM) for one-domain solving of the nonlinear convection-diffusion equation, as it appears in mixture continuum formulation of the energy transport in solid-liquid phase change systems. The method is structured on multiquadrics radial basis functions. The collocation is made locally over a set of overlapping domains of influence and the time stepping is performed in an explicit way. Only small systems of linear equations with the dimension of the number of nodes in the domain of influence have to be solved for each node. The method does not require polygonisation (meshing). The solution is found only on a set of nodes.
The computational effort grows roughly linearly with the number of the nodes. Results are compared with the existing steady analytical solutions for one-dimensional convective-diffusive problem with and without phase change. Regular and randomly displaced node arrangements have been employed. The solution is compared with the results of the classical finite volume method. Excellent agreement with analytical solution and reference numerical method has been found. A realistic two-dimensional nonlinear industrial test associated with direct-chill, continuously cast aluminium alloy slab is presented.

80M25 Other numerical methods (thermodynamics) (MSC2010)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
80A22 Stefan problems, phase changes, etc.
76R50 Diffusion
Full Text: DOI
[1] DOI: 10.1016/0017-9310(87)90094-9 · Zbl 0634.76104
[2] DOI: 10.1007/978-3-642-56103-0_6
[3] DOI: 10.1002/nme.1620231003 · Zbl 0631.65127
[4] DOI: 10.1016/S0955-7997(00)00004-7 · Zbl 0942.80002
[5] DOI: 10.1016/0898-1221(90)90271-K · Zbl 0850.76048
[6] DOI: 10.1080/716100496
[7] DOI: 10.1007/s00466-003-0416-5 · Zbl 1035.65136
[8] Mai-Duy, N. and Tran-Cong, T. (2001), ”Numerical solution of differential equations using multiquadrics radial basis function networks”,International Journal for Numerical Methods in Engineering, Vol. 23, pp. 1807-29. · Zbl 02022497
[9] DOI: 10.1016/S0955-7997(01)00092-3 · Zbl 0996.65131
[10] Mai-Duy, N. and Tran-Cong, T. (2003), ”Indirect RBFN method with thin plate splines for numerical solution of differential equations”,Computer Modeling in Engineering & Sciences, Vol. 4, pp. 85-102. · Zbl 1148.76351
[11] Nayroles, B., Touzot, G. and Villon, P. (1991), ”The diffuse approximation”,C.R. Acad. Sci. Paris, Vol. 313-II, pp. 293-6. · Zbl 0753.65012
[12] DOI: 10.1002/nme.1620231003 · Zbl 0631.65127
[13] DOI: 10.1016/S0898-1221(01)00305-4 · Zbl 0999.65135
[14] DOI: 10.1016/S0017-9310(96)85018-6 · Zbl 0979.76529
[15] Šarler, B. (2005), ”A radial basis function collocation approach in computational fluid dynamics”,Computer Modeling in Engineering & Sciences, Vol. 7, pp. 185-93. · Zbl 1189.76380
[16] DOI: 10.1016/S0955-7997(97)00113-6
[17] DOI: 10.1108/09615539910260130 · Zbl 0962.76567
[18] DOI: 10.1108/09615530410513809 · Zbl 1103.76361
[19] Šarler, B. and Vertnik, R. (2005), ”Meshfree explicit radial basis function collocation method for diffusion problems”,Computers and Mathematics with Applications(in press). · Zbl 1168.41003
[20] Šarler, B., Vertnik, R. and Perko, J. (2005), ”Application of diffuse approximate method in convective-diffusive solidification problems”,Computers, Materials, Continua, Vol. 2, pp. 77-83. · Zbl 1160.76383
[21] DOI: 10.1016/S0045-7825(02)00618-7 · Zbl 1025.76036
[22] Tolstykh, A.I. and Shirobokov, D.A. (2005), ”Using radial basis functions in a ’finite difference mode”’,Computer Modeling in Engineering & Sciences, Vol. 7, pp. 207-22. · Zbl 1107.74050
[23] Vertnik, R., Perko, J. and Šarler, B. (2004), ”Solution of temperature field in DC cast aluminium alloy billet by the diffuse approximate method”,Materials and Technology, Vol. 38, pp. 257-61.
[24] DOI: 10.1002/nme.1620300419 · Zbl 0729.73237
[25] DOI: 10.1016/S0045-7825(01)00419-4 · Zbl 1065.74074
[26] DOI: 10.1007/s004660000181 · Zbl 0986.74079
[27] DOI: 10.1007/s00466-003-0501-9 · Zbl 1063.74104
[28] DOI: 10.1016/S1471-5317(02)00041-X
[29] DOI: 10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I · Zbl 0907.65095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.