×

Bounded sets of KKT multipliers in vector optimization. (English) Zbl 1120.90054

Summary: In this article we discuss the conditions required to guarantee the non-emptiness and the boundedness of certain subsets of the set of Lagrange multipliers for an inequality and equality constrained vector minimization problem.

MSC:

90C29 Multi-objective and goal programming
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Amahroq T., Taa A. (1997) On Lagrange–Kuhn–Tucker multipliers for multiobjective optimization problems. Optimization 41(2): 159–172 · Zbl 0882.90114
[2] Anitescu M. (2000) Degenerate nonlinear programming with a quadratic growth condition. SIAM J. Optim. 10(4): 1116–1135 · Zbl 0994.65073
[3] Anitescu M.: Nonlinear programs with unbounded Lagrange multiplier sets. Technical Report of the Argonne National Laboratory/Mathematics and Computer Science (Report No P793-0200) (2000) · Zbl 0994.65073
[4] Chankong V., Haimes Y.Y. (1983) Multiobjective Decision Making (Theory and methodology) North-Holland Series in System Science and Engineering, vol. 8. North-Holland Publishing Co., New York · Zbl 0622.90002
[5] Chandra S., Dutta J., Lalitha C.S. (2004) Regularity conditions and optimality in vector optimization. Numer. Funct. Anal. Optim. 25(5–6): 479–501 · Zbl 1071.90040
[6] Charnes A., Cooper W.W. (1961) Management Models and Industrial Applications of Linear Programming, vol 1. Wiley, New York · Zbl 0107.37004
[7] Ciligot-Travain M. (1994) On Lagrange–Kuhn–Tucker multipliers for Pareto optimization problems. Numer. Funct. Anal. Optim. 15(5–6): 689–693 · Zbl 0831.49021
[8] Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience (1983) · Zbl 0582.49001
[9] Craven B.D. (1989) Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10(1–2): 49–64 · Zbl 0645.90076
[10] Dempe S.: Foundations of Bilevel Programming. Kluwer Academic Publishers (2002) · Zbl 1038.90097
[11] Ehrgott M. (2005) Multicriteria Optimization, 2nd edn. Springer-Verlag, Berlin · Zbl 1132.90001
[12] Gauvin J. (1977) A necessary and sufficient regularity condition to have bounded multipliers in nonconvex program. Math. Program. 12(1): 136–138 · Zbl 0354.90075
[13] Göpfert A., Riahi H., Tammer C., Zalinescu C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, vol. 17. Springer-Verlag, New York (2003)
[14] Jahn J. (2004) Vector Optimization. Theory, Applications, and Extensions. Springer-Verlag, Berlin · Zbl 1055.90065
[15] Li X.F. (2000) Constraint qualifications in nonsmooth multiobjective optimization. J. Optim. Theory Appl. 106(2): 373–398 · Zbl 0976.90092
[16] Luc D.T. (1989) Theory of Vector Optimization Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer-Verlag, Berlin
[17] Luksan L., Matonoha C., Vleck J.: Interior poiny methods for large scale nonlinear programming. Technical Report V-917, Institute for Computer Science, Academy of Science, Czech Republic (2004)
[18] Luo Z.Q., Pang J.S., Ralph D. (1996) Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge · Zbl 0870.90092
[19] Maeda T. (2004) Second-order conditions for efficiency in nonsmooth multiobjective optimization problems. J. Optim. Theory Appl. 122(3): 521–538 · Zbl 1082.90106
[20] Maeda T. (1994) Constraint qualifications in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80(3): 483–500 · Zbl 0797.90083
[21] Mangasarian O.L. (1969) Nonlinear Programming. McGraw-Hill Book Co., New York-London-Sydney · Zbl 0194.20201
[22] Mangasarian O.L., Fromovitz S. (1967) The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 · Zbl 0149.16701
[23] Yu P.L.: Multiple-Criteria Decision Making. Concepts, Techniques, and Extensions. With the assistance of Yoon Ro Lee and Antonie Stam. Mathematical Concepts and Methods in Science and Engineering, vol. 30. Plenum Press, New York (1985) · Zbl 0643.90045
[24] Zlobec S.: Stable Parametric Programming. Kluwer Academic Publishers (2001) · Zbl 0986.90062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.