Verification of stochastic models in uncertain environments using the constitutive relation error method. (English) Zbl 1120.74820

Summary: This paper deals with local stress errors which occur in linear elastic FE analysis in an uncertain environment (material, loads,\( \cdots \)). The estimation technique described here uses the concept of error in constitutive relation, but it can be adapted to other estimators. First, we review the principle of the method, then extend it to the stochastic case. This approach yields bounds on the stresses associated with a given confidence level. We illustrate this presentation through a test example.


74S05 Finite element methods applied to problems in solid mechanics
74E35 Random structure in solid mechanics
74B05 Classical linear elasticity
Full Text: DOI


[1] ()
[2] Ladevèze, P.; Pelle, J.P., Mastering calculations in linear and nonlinear mechanics, (2004), Springer NY
[3] Babus˘ka, I.; Strouboulis, T., The finite element method and its reliability, (2001), Oxford University Press · Zbl 0997.74069
[4] Babus˘ka, I.; Rheinboldt, W.C., A posteriori estimates for the finite element method, Int. J. numer. methods engrg., 12, 1597-1615, (1978) · Zbl 0396.65068
[5] Ladevèze, P.; Leguillon, D., Error estimate procedure in the finite element method and application, SIAM J. numer. anal., 20, 3, 485-509, (1983) · Zbl 0582.65078
[6] Zienkiewicz, O.C.; Zhu, J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. numer. methods engrg., 24, 337-357, (1987) · Zbl 0602.73063
[7] Babus˘ka, I.; Strouboulis, T.; Upadhyay, C.S.; Gangaraj, S.K., A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method, Int. J. numer. methods engrg., 38, 4207-4235, (1995) · Zbl 0844.65078
[8] Babus˘ka, I.; Strouboulis, T.; Gangaraj, S.K.; Copps, K.; Datta, D.K., A posteriori estimation of the error estimate, (), 155-197 · Zbl 0948.74068
[9] Ladevèze, P.; Rougeot, P.; Blanchard, P.; Moreau, J.P., Local error estimators for finite element analysis, Comput. methods appl. mech. engrg., 176, 231-246, (1999) · Zbl 0967.74066
[10] Peraire, J.; Patera, A., Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement, (), 199-216
[11] Prudhomme, S.; Oden, J.T., On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. methods appl. mech. engrg., 176, 313-331, (1999) · Zbl 0945.65123
[12] Rannacher, R.; Suttmeier, F.T., A feedback approach to error control in finite element methods: application to linear elasticity, Comput. mech., 19, 434-446, (1997) · Zbl 0894.73170
[13] Ohnimus, S.; Stein, E.; Walhorn, E., Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems, Int. J. numer. methods engrg., 52, 7, 727-746, (2001) · Zbl 1057.74042
[14] Ladevèze, P.; Rougeot, P., New advances on a posteriori error on constitutive relation in f.e. analysis, Comput. methods appl. mech. engrg., 150, 239-249, (1997) · Zbl 0906.73064
[15] Florentin, E.; Gallimard, L.; Pelle, J.P., Evaluation of the local quality of stresses in 3D finite element analysis, Comput. methods appl. mech. engrg., 191, 4441-4457, (2002) · Zbl 1040.74045
[16] P. Ladevèze, Error bounds of computed outputs of interest for linear and nonlinear structural problems. C.R. Acad. Sci., in press.
[17] Ghanem, R.; Spanos, P., Stochastic finite element: A special approach, (1991), Springer
[18] Ghanem, R., Ingredients for a general purpose stochastic finite elements formulation, Comput. methods appl. mech. engrg., 168, 19-34, (1999) · Zbl 0943.65008
[19] Deb, M.K.; Babus˘ka, I.; Oden, J.T., Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. methods appl. mech. engrg., 190, 6359-6372, (2001) · Zbl 1075.65006
[20] R. Ghanem, M. Pelissetti, A method for the validation of predictive computations using a stochastic approach, in: Proceedings of the OMAE’02, Oslo, 2002.
[21] R. Ghanem, M. Pelissetti, Error estimation for the validation of model-based predictions, in: Proceedings of the 5th World Congress on Computational Mechanics, 2002.
[22] P. Ladevèze, Validation and verification of stochastic models in uncertain environment using constitutive relation error method, Technical Report 258, LMT-Cachan, 2003.
[23] K. Karhunen, Uber lineare methoden in der wahrscheinlichkeitsrechnung, Amer. Acad. Sci., Fennicade (Translation: RAND Corporation, Santa Monica, California, Rep. T-131, Aug. 1960) 37 (1947) 3-79.
[24] Loeve, M., Fonctions aleatoires du second ordre, supplement to P. levy, processus stochastic et mouvement brownien, (1948), Gauthier Villars Paris
[25] Schueller, G., A state-of-the-art report on computational stochastic mechanics, Probab. engrg. mech., 12, 197-321, (1997)
[26] A. Keese, H.G. Matthies, Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations, in: SIAM conference on Computational Science and Engineering, San Diego, 2003. · Zbl 1354.65013
[27] Le Maitre, O.P.; Knio, O.M.; Debusschere, B.J.; Najm, N.H.; Ghanem, R.G., A multigrid solver for two-dimensional stochastic diffusion equations, Comput. methods appl. mech. engrg., 192, 4723-4744, (2003) · Zbl 1037.65007
[28] Matthies, H.G.; Bucher, C.G., Finite element for stochastic media problems, Comput. methods appl. mech. engrg., 168, 3-17, (1999) · Zbl 0953.74065
[29] Liu, J.S., Monte Carlo strategies in scientific computing, (2001), Springer · Zbl 0991.65001
[30] Prager, W.; Synge, J.L., Approximation in elasticity based on the concept of functions space, Quart. appl. math., 5, 261-269, (1947) · Zbl 0029.23505
[31] Cirak, F.; Ramm, E., A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem, Comput. methods appl. mech. engrg., 156, 351-362, (1998) · Zbl 0947.74062
[32] Strouboulis, T.; Babus˘ka, I.; Datta, D.K.; Copps, K.; Gangaraj, S.K., A posteriori estimation and adaptative control of the error in the quantity of interest. part 1: A posteriori estimation of the error in the von Mises stress and the stress intensity factor, Comput. methods appl. mech. engrg., 180, 261-274, (2000) · Zbl 0973.74083
[33] Florentin, E.; Gallimard, L.; Ladevèze, P.; Pelle, J.P., Local error estimator for stresses in 3D structural analysis, Comput. struct., 81, 1751-1757, (2003)
[34] E. Florentin, L. Gallimard, P. Ladevèze, J.P. Pelle, P. Rougeot, Local constitutive relation error for Mises stress in 3D elasticity, in: Proceedings of the ADMOS’03, Goteborg, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.