×

zbMATH — the first resource for mathematics

Arbitrarily smooth generalized finite element approximations. (English) Zbl 1120.74816
Summary: This paper presents a procedure to build \(C^k\), \(k\) arbitrarily large, generalized finite element (FE) shape functions defined on non-structured finite element meshes. The functions have the same support as corresponding global FE Lagrangian shape functions. Meshes with both convex and non-convex clouds (set of elements sharing a vertex node), can be used. The so-called R-functions are used to build \(C^k\) FE-based partition of unity functions with non-convex support. A technique to combine \(C^{0}\) Lagrangian FE shape functions with the proposed \(Ck\) partition of unity is presented. The technique allows the use of \(C^k\) generalized FE shape functions in parts of the computational domain where their high smoothness is required, as in the case of problems with distributional boundary conditions, and the less computationally demanding \(C^{0}\) generalized FE shape functions elsewhere in the domain. A linear elasticity problem with a concentrated moment is solved using the proposed \(C^k\) generalized FE method. Higher order distributional boundary conditions can also be handled by the method. A detailed convergence analysis is presented for this class of problems as well as for problems in energy space. The integrability of the functions using standard Gauss-Legendre rules is also investigated.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
Software:
Mfree2D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atluri, S.N.; Zhu, T., A new meshless local petrov – galerkin (MLPG) approach in computational mechanics, Comput. mech., 22, 117-127, (1998) · Zbl 0932.76067
[2] Babuška, I.; Banerjee, U.; Osborn, J.E., Survey of meshless and generalized finite element methods: a unified approach, Acta numer., 12, May, 1-125, (2003) · Zbl 1048.65105
[3] I. Babuška, V. Nistor, Interior numerical approximation of boundary value problems with a distributional data, Technical Report ICES 05-11, The University of Texas at Austin, Austin, Texas, February 2005. Available from: <http://www.ices.utexas.edu/>.
[4] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. methods engrg., 45, 601-620, (1999) · Zbl 0943.74061
[5] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M., Meshless methods: an overview and recent developments, Comput. methods appl. mech. engrg., 139, 3-47, (1996) · Zbl 0891.73075
[6] Belytschko, T.; Lu, Y.Y.; Gu, L., Crack propagation by element free Galerkin methods, (), 191-205
[7] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int. J. numer. methods engrg., 37, 229-256, (1994) · Zbl 0796.73077
[8] Belytschko, T.; Organ, D.; Krongauz, Y., A coupled finite element – element-free Galerkin method, Comput. mech., 17, 186-195, (1995) · Zbl 0840.73058
[9] Calvo, B.; Martinez, M.A.; Doblare, M., On solving large strain hyperelastic problems with the natural element method, Int. J. numer. methods engrg., 62, 159-185, (2005) · Zbl 1179.74171
[10] Chen, J.S.; Pan, C.; Wu, C.T., Large deformation analysis of rubber based on a reproducing kernel particle method, Comput. mech., 19, 211-227, (1997) · Zbl 0888.73073
[11] Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. methods appl. mech. engrg., 139, 195-227, (1996) · Zbl 0918.73330
[12] Chen, J.-S.; Wu, C.-T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. numer. methods engrg., 50, 435-466, (2001) · Zbl 1011.74081
[13] De, S.; Bathe, K.J., The method of finite spheres, Comput. mech., 25, 329-345, (2000) · Zbl 0952.65091
[14] deBoor, Carl, A practical guide to splines, (1978), Springer-Verlag New York
[15] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput. mech., 23, 219-230, (1999) · Zbl 0963.74076
[16] Dolbow, J.; Moes, N.; Belytschko, T., Discontinuous enrichment in finite elements with a partition of unity method, Finite elem. anal. des., 36, 235-260, (2000) · Zbl 0981.74057
[17] Duarte, C.A.; Babuška, I.; Oden, J.T., Generalized finite element methods for three dimensional structural mechanics problems, (), 53-58
[18] Duarte, C.A.; Babuška, I.; Oden, J.T., Generalized finite element methods for three dimensional structural mechanics problems, Comput. struct., 77, 215-232, (2000)
[19] Duarte, C.A.; Hamzeh, O.N.; Liszka, T.J.; Tworzydlo, W.W., A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Comput. methods appl. mech. engrg., 190, 2227-2262, (2001) · Zbl 1047.74056
[20] C.A. Duarte, D.Q. Migliano, E.B. Becker, A technique to combine meshfree- and finite element-based partition of unity approximations, Structural Research Series 638, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, May 2005. ISSN-0197-9191.
[21] Duarte, C.A.M.; Oden, J.T., An hp adaptive method using clouds, Comput. methods appl. mech. engrg., 139, 237-262, (1996) · Zbl 0918.73328
[22] Duarte, C.A.M.; Oden, J.T., hp clouds—an hp meshless method, Numer. methods partial differ. equat., 12, 673-705, (1996) · Zbl 0869.65069
[23] C. Armando Duarte, The hp cloud method, Ph.D. dissertation, The University of Texas at Austin, Austin, TX, USA, December 1996.
[24] H.C. Edwards, C∞ finite element basis functions, Technical Report, TICAM Report 96-45, The University of Texas at Austin, 1996.
[25] H.C. Edwards, A parallel infrastructure for scalable adaptive finite element methods and its application to least squares C∞ colocation, Ph.D. dissertation, The University of Texas at Austin, Austin, TX, USA, May 1997.
[26] Fernández-Méndez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput. methods appl. mech. engrg., 193, 1257-1275, (2004) · Zbl 1060.74665
[27] Gingold, R.A.; Monaghan, J.J., Kernel estimates as a basis for general particle methods in hydrodynamics, Journal of computational physics, 46, 429-453, (1982) · Zbl 0487.76010
[28] Griebel, M.; Schweitzer, M.A., A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic pdes, SIAM J. sci. comput., 22, 3, 853-890, (2000) · Zbl 0974.65090
[29] ()
[30] Griebel, M.; Schweitzer, M.A., A particle-partition of unity method—part II: efficient cover construction and reliable integration, SIAM J. sci. comput., 23, 5, 1655-1682, (2002) · Zbl 1011.65069
[31] Griebel, M.; Schweitzer, M.A., A particle-partition of unity method—part III: A multilevel solver, SIAM J. sci. comput., 24, 2, 377-409, (2002) · Zbl 1027.65168
[32] ()
[33] Han, W.; Lu, H.; Li, S.; Cao, J.; Liu, W.K., Reproducing kernel element method. part I: theoretical formulation, Comput. methods appl. mech. engrg., 193, 933-951, (2004) · Zbl 1060.74670
[34] Hegen, D., Element-free Galerkin methods in combination with finite element approaches, Comput. methods appl. mech. engrg., 135, 1-2, 143-166, (1996) · Zbl 0893.73063
[35] Huerta, A.; Fernandez-Mendez, S., Enrichment and coupling of the finite element and meshless methods, Int. J. numer. methods engrg., 48, 1615-1636, (2000) · Zbl 0976.74067
[36] Krongauz, Y.; Belytschko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. methods appl. mech. engrg., 131, 133-145, (1996) · Zbl 0881.65098
[37] Krysl, P.; Belytschko, T., Analysis of thin plates by the element-free Galerkin method, Comput. mech., 17, 26-35, (1996) · Zbl 0841.73064
[38] Krysl, P.; Belytschko, T., Analysis of thin shells by the element-free Galerkin method, Int. J. solids struct., 33, 3057-3080, (1996) · Zbl 0929.74126
[39] Lancaster, P.; Salkauskas, K., Curve and surface Fitting, an introduction, (1986), Academic Press San Diego · Zbl 0649.65012
[40] Lekien, F.; Marsden, J., Tricubic interpolation in three dimensions, Int. J. numer. methods engrg., 63, 455-471, (2005) · Zbl 1140.76423
[41] Francois Lekien, Chad Coulliette, Jerry Marsden, Lagrangian structures in very high-frequency radar data and optimal pollution timing, in: American Institute of Physics Conference Proceedings, vol. 676, 2003, pp. 162-168.
[42] Li, S.; Liu, W.K., Meshfree particle methods, ISBN: 3540222561, (2004), Springer, (November) · Zbl 1073.65002
[43] Tadeusz Liszka, J. Orkisz, Finite difference method for arbitrary irregular meshes in nonlinear problems of applied mechanics, in: IV SMiRt, San Francisco, 1977.
[44] Liszka, Tadeusz; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. struct., 11, 83-95, (1980) · Zbl 0427.73077
[45] Liu, G.R., Mesh free methods: moving beyond the finite element method, (2002), CRC Press, (July)
[46] Liu, W.K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, Int. J. numer. methods fluids, 21, 901-931, (1995) · Zbl 0885.76078
[47] Liu, W.K.; Chen, Y.; Jun, S.; Chen, J.S.; Belytschko, T.; Pan, C.; Uras, R.A.; Chang, C.T., Overview and applications of the reproducing kernel particle methods, Archives in computational methods in engineering: state of art reviews, vol. 3, (1996), CIMNE Bearcelona, Spain
[48] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods engrg., 20, 1081-1106, (1995) · Zbl 0881.76072
[49] Liu, W.K.; Uras, R.A.; Chen, Y., Enrichment of the finite element method with reproducing kernel particle method, J. appl. mech., 64, 861-870, (1997) · Zbl 0920.73366
[50] Lu, H.; Han, W.; Liu, D.C.; Simkins, W.K., Reproducing kernel element method part II: globally conforming im/cn hierarchies, Comput. methods appl. mech. engrg., 193, 953-987, (2004) · Zbl 1093.74062
[51] Lu, H.; Li, S.; Simkins, D.C.; Liu, W.K.; Cao, J., Reproducing kernel element method. part III: generalized enrichment and applications, Comput. methods appl. mech. engrg., 193, 989-1011, (2004) · Zbl 1060.74671
[52] Melenk, J.M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput. methods appl. mech. engrg., 139, 289-314, (1996) · Zbl 0881.65099
[53] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 131-150, (1999) · Zbl 0955.74066
[54] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. mech., 10, 307-318, (1992) · Zbl 0764.65068
[55] Oden, J.T.; Duarte, C.A., Clouds, cracks and FEM’s, (), 302-321 · Zbl 0976.74071
[56] Oden, J.T.; Duarte, C.A.M., Solution of singular problems using hp clouds, (), 35-54 · Zbl 0891.73067
[57] Onate, E.; Idelsohn, S., A mesh-free finite point method for advective – diffusive transport and fluid flow problems, Comput. mech., 21, 283-292, (1998) · Zbl 0919.76072
[58] E. Onate, S. Idelsohn, O.C. Zienkiewicz, Finite point methods in computational mechanics, Technical Report, International Center for Numerical Methods in Engineering, Barcelona, Spain, July 1995.
[59] Onate, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L.; Sacco, C., A stabilized finite point method for analysis of fluid mechanics problems, Comput. methods appl. mech. engrg., 315-346, (1996) · Zbl 0894.76065
[60] Organ, D.; Fleming, M.; Terry, T.; Belytschko, T., Continuous meshless approximations for nonconvex bodies by diffraction and transparency, Comput. mech., 18, 225-235, (1996) · Zbl 0864.73076
[61] D.M. Quaresma, Element-based hp-cloud method for large deformation analysis of rubber, Ph.D. Proposal, The University of Texas at Austin, January 2003.
[62] Ramm, E.; Wall, W.A., Preface of computational methods for shells, Comput. methods appl. mech. engrg., 194, iii-v, (2005)
[63] Rvachev, V.L.; Sheiko, T.I., R-functions in boundary value problems in mechanics, Appl. mech. rev., 48, 4, 151-188, (1995)
[64] V. Shapiro, Theory of R-functions and applications: a primer, Technical Report TR91-1219, Computer Science Department, Cornell University, Ithaca, NY, 1991.
[65] D. Shepard, A two-dimensional function for irregularly spaced data, in: ACM National Conference, 1968, pp. 517-524.
[66] Simkins, D.C.; Li, S.; Lu, H.; Liu, W.K., Reproducing kernel element method. part IV: globally compatible cn (n⩾1) triangular hierarchy, Comput. methods appl. mech. engrg., 193, 1013-1034, (2004) · Zbl 1093.74064
[67] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. methods appl. mech. engrg., 81, 1-3, 43-69, (2000) · Zbl 0983.65127
[68] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method: an example of its implementation and illustration of its performance, Int. J. numer. methods engrg., 47, 8, 1401-1417, (2000) · Zbl 0955.65080
[69] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Comput. methods appl. mech. engrg., 190, 4081-4193, (2001) · Zbl 0997.74069
[70] Strouboulis, T.; Zhang, L.; Babuška, I., Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids, Comput. methods appl. mech. engrg., 192, 3109-3161, (2003) · Zbl 1054.74059
[71] Sukumar, N.; Chopp, D.; Moes, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite element method, Comput. methods appl. mech. engrg., 190, 6183-6200, (2001) · Zbl 1029.74049
[72] Surana, K.S.; Petti, S.R.; Ahmadi, A.R.; Reddy, J.N., On p-version hierarchical interpolation functions for higher-order continuity finite element models, Int. J. comput. engrg. sci., 2, 4, 653-673, (2001)
[73] J.W. Swegle, S.W. Attaway, M.W. Heinstein, F.J. Mello, D.L. Hicks, An analysis of the smoothed particle hydrodynamics, Technical Report SAND93-2513 UC-705, Sandia, 1994.
[74] Swegle, J.W.; Hicks, D.L.; Attaway, S.W., Smoothed particle hydrodynamics stability analysis, J. comput. phys., 116, 123-134, (1995) · Zbl 0818.76071
[75] Timoshenko, S.P.; Goodier, J.N., Theory of elasticity, (1982), McGraw-Hill Book Company London · Zbl 0266.73008
[76] Tworzydlo, W., Analysis of large deformations of membrane shells by the generalized finite difference method, Comput. struct., 27, 1, 39-59, (1987) · Zbl 0624.73101
[77] Tworzydlo, W., The FDM in arbitrary curvilinear co-ordinates—formulation, numerical approach and applications, Int. J. numer. methods engrg., 28, 261-277, (1989) · Zbl 0676.73054
[78] Ugural, A.C.; Fenster, S.K., Advanced strength and applied elasticity, (1995), Prentice-Hall Upper Saddle River, NJ · Zbl 0486.73003
[79] Wagner, G.J.; Liu, W.K., Hierarchical enrichment for bridging scales and meshfree boundary conditions, Int. J. numer. methods engrg., 50, 3, 507-524, (2000) · Zbl 1006.76073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.