×

zbMATH — the first resource for mathematics

Moving particle finite element method with superconvergence: nodal integration formulation and applications. (English) Zbl 1120.74051
Summary: A new approach to moving particle finite element method has been developed which is capable to gain a global superconvergence through solving particle kernel function to satisfy high-order consistencies. The nodal-based moving particle finite element method, in conjunction with the proposed superconvergence approach, provides an optimized combination in numerical accuracy and computation efficiency. The three-dimensional engineering scale simulations demonstrate that this scheme is robust and capable to handle high-speed penetration and dynamic crack propagation with intersonic and supersonic speeds.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R15 High-velocity fracture
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zienkiewicz, O.C., The finite element in engineering science, (1972), McGraw Hill · Zbl 0237.73071
[2] Oden, J.T., Finite elements of nonlinear continua, (1972), McGraw-Hill Book Company New York · Zbl 0235.73038
[3] Hughes, T.J.R., The finite element method, (1987), Prentice-Hall New Jersey
[4] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley & Sons New York · Zbl 0959.74001
[5] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int. J. numer. methods engrg., 37, 229-256, (1994) · Zbl 0796.73077
[6] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[7] Oden, J.T.; Duarte, C.A.M.; Zienkiewicz, O.C., A new cloud-based hp finite element method, Comput. methods appl. mech. engrg., 153, 117-126, (1998) · Zbl 0956.74062
[8] Duarte, C.A.; Oden, J.T., An h-p adaptive method using clouds, Comput. methods appl. mech. engrg., 139, 1-4, 237-262, (1996) · Zbl 0918.73328
[9] Randles, P.; Libersky, L., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. methods appl. mech. engrg., 139, 375-408, (1996) · Zbl 0896.73075
[10] Wagner, G.J.; Liu, W.K., Application of essential boundary conditions in mesh-free methods: a corrected collocation method, Int. J. numer. methods engrg., 47, 1367-1379, (2000) · Zbl 0965.76069
[11] Bonet, J.; Kulasegaram, S., Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, Int. J. numer. methods engrg., 47, 1189-1214, (2000) · Zbl 0964.76071
[12] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput. mech., 23, 3, 219-230, (1999) · Zbl 0963.74076
[13] Babuska, I.; Banerjee, U.; Osborn, J.E., Survey of meshless and generalized finite element methods: a unified approach, Acta numer., 12, 1-125, (2003) · Zbl 1048.65105
[14] Li, S.F.; Liu, W.K., Meshfree and particle methods and their applications, Appl. mech. rev., 55, 1-34, (2002)
[15] Li, S.F.; Wing, K., Meshfree particle methods, (2004), Springer · Zbl 1073.65002
[16] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. methods engrg., 45, 5, 601-620, (1999) · Zbl 0943.74061
[17] Nayroles, B.; Touzot, G.; Villon, P., The diffuse elements method, Comptes rendus de L academie des sciences serie ii, 313, 2, 133-138, (1991) · Zbl 0725.73085
[18] Sukumar, N.; Moran, B.; Belytschko, T., The natural element method in solid mechanics, Int. J. numer. methods engrg., 43, 5, 839, (1998) · Zbl 0940.74078
[19] Strouboulis, T.; Babuska, I.; Copps, K., The design and analysis of the generalized finite element method, Int. J. numer. methods engrg., 181, 43-69, (2000) · Zbl 0983.65127
[20] Huerta, A.; Fernandez-Mendez, S., Enrichment and coupling of the finite element and meshless methods, Int. J. numer. methods engrg., 48, 11, 1615-1636, (2000) · Zbl 0976.74067
[21] Chen, J.S.; Yoon, S.P.; Wu, C.T., Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. numer. methods engrg., 53, 12, 2587-2615, (2002) · Zbl 1098.74732
[22] Hao, S.; Liu, W.K.; Chang, C.T., Computer implementation of damage models by finite element and meshfree methods, Comput. methods appl. mech. engrg., 187, 401-440, (2000) · Zbl 0980.74063
[23] De, S.R.; Bathe, K.E., The method of finite spheres with improved numerical integration, Comput. struct., 79, 22-25, 2183-2196, (2001)
[24] Atluri, S.N.; Zhu, T.L., New concepts in meshless methods, Int. J. numer. methods engrg., 47, 1-3, 537-556, (2000) · Zbl 0988.74075
[25] Liu, W.K.; Li, S.F.; Belytschko, T., Moving least-square reproducing kernel methods. 1. methodology and convergence, Comput. methods appl. mech. engrg., 143, 1-2, 113-154, (1997) · Zbl 0883.65088
[26] Babuska, I.; Melenk, J.M., The partition of unity method, Int. J. numer. methods engrg., 40, 727-758, (1997) · Zbl 0949.65117
[27] Yagawa, G., Node-by-node parallel finite elements: a virtually meshless method, Int. J. numer. methods engrg., 60, 1, 69-102, (2004) · Zbl 1060.74647
[28] Babuska, I., Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivative in finite element solutions of laplace’s, poission’s, and the elasticity equations, Numer. methods partial differen. equat., 12, 347-392, (1996) · Zbl 0854.65089
[29] Wahlbin, L.B., Superconvergence in Galerkin finite element methods, () · Zbl 0382.65057
[30] Hao, S.; Park, H.S.; Liu, W.K., Moving particle finite element method, Int. J. numer. methods engrg., 53, 8, 1937-1958, (2002) · Zbl 1169.74606
[31] S. Hao, Liu, W.K. Revisit of moving particle finite element method, in: Fifth World Congress on Computational Mechanics, Vienna, Austria, 2002. On-line publication (ISBN 3-9501554-0-6).
[32] Hao, S.; Liu, W.K.; Belytschko, T., Moving particle finite element method with global smoothness, Int. J. numer. methods engrg., 59, 1007-1020, (2004) · Zbl 1065.74608
[33] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C., On the completeness of meshfree particle methods, Int. J. numer. methods engrg., 43, 5, 785-812, (1998) · Zbl 0939.74076
[34] Hughes, T.J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Int. J. numer. methods engrg., 15, 1862-1867, (1980) · Zbl 0463.73081
[35] Freund, L.B., Mechanics of dynamic shear crack-propagation, J. geophys. res., 84, NB5, 2199-2209, (1979)
[36] Bouchon, M., How fast is rupture during an earthquake? new insights from the 1999 Turkey earthquakes, Geophys. res. lett., 28, 14, 2723-2726, (2001)
[37] Rosakis, A.J.; Samudrala, O.; Coker, D., Cracks faster than the shear wave speed, Science, 284, 5418, 1337-1340, (1999)
[38] Dmowska, R.; Rice, J.R., Fracture theory and its seismological application, ()
[39] A.J. Rosakis, Intersonic shear cracks and fault ruptures, 2001.
[40] S. Hao, W.K. Liu, A. Rosakis, P. Klein, Modeling and simulation of intersonic crack growth, Northwestern University, M. Engineering, 2001. · Zbl 1045.74588
[41] S. Hao, W.K. Liu, P. Klein, Multi-Scale Damage Model, Chicago, IL, USA, IUTAM2000, 2000.
[42] Burridge, C.R.G.; Freund, L.B., Stability of a rapid mode-II shear crack with finite cohesive traction, J. geophys. res., 84, NB5, 2210-2222, (1979)
[43] S. Hao et al., DTRW Reports II, 2000.
[44] Belytschko, T.; Neal, M.O., Contact-impact by the pinball algorithm with penalty and Lagrangian-methods, Int. J. numer. methods engrg., 31, 3, 547-572, (1991) · Zbl 0825.73984
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.