×

zbMATH — the first resource for mathematics

Analysis of fracture in thin shells by overlapping paired elements. (English) Zbl 1120.74048
Summary: A finite element methodology for evolution of cracks in thin shells using mid-surface displacement and director field discontinuities is presented. We enrich the mid-surface displacement and director fields of a discrete Kirchhoff-Love quadrilateral element using a piecewise decomposition of element kinematics, which leads to a basis that is a variant of the one used in the extended finite element method. This allows considerable simplifications in the inclusion of the shell director field. A cohesive law is employed to represent the progressive release of fracture energy. In contrast with previous works, we retain the original quadrature points after the formation of a crack, which, in combination with an elasto-plastic multiplicative decomposition of the deformation gradient, avoids the previously required internal variable mapping during crack evolution. Results are presented for large strain elastic and elasto-plastic crack propagation.
Reviewer: Reviewer (Berlin)

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R20 Anelastic fracture and damage
74K25 Shells
Software:
NewtonLib
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Argyris, J.H., An excursion into large rotations, Comput. methods appl. mech. engrg., 32, 85-155, (1982) · Zbl 0505.73064
[2] Simo, J.C.; Fox, D.D., On a stress resultant geometrically exact shell model. part I: formulation and optimal parametrization, Comput. methods appl. mech. engrg., 72, 267-304, (1989) · Zbl 0692.73062
[3] Simo, J.C.; Fox, D.D.; Rifai, M.S., On a stress resultant geometrically exact shell model. part II: the linear theory; computational aspects, Comput. methods appl. mech. engrg., 73, 53-92, (1989) · Zbl 0724.73138
[4] Stander, N.; Matzenmiller, A.; Ramm, E., An assessment of assumed strain methods in finite rotation shell analysis, Engrg. comput., 6, 58-65, (1989)
[5] Buechter, N.; Ramm, E., Shell theory versus degeneration—a comparison in large rotation finite element analysis, Int. J. numer. methods engrg., 34, 39-59, (1992) · Zbl 0760.73041
[6] Bischoff, M.; Ramm, E., Shear deformable shell elements for large strains and rotations, Int. J. numer. methods engrg., 40, 4427-4449, (1997) · Zbl 0892.73054
[7] Areias, P.M.A.; Belytschko, T., Non-linear analysis of shells with arbitrary evolving cracks using XFEM, Int. J. numer. methods engrg., 62, 384-415, (2005) · Zbl 1080.74043
[8] Areias, P.M.A.; Song, J.-H.; Belytschko, T., A finite-strain quadrilateral shell element based on discrete kirchhoff – love constraints, Int. J. numer. methods engrg., 64, 1166-1206, (2005) · Zbl 1113.74063
[9] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. methods appl. mech. engrg., 193, 3523-3540, (2004) · Zbl 1068.74076
[10] Mergheim, J.; Kuhl, E.; Steinmann, P., A finite element method for the computational modelling of cohesive cracks, Int. J. numer. methods engrg., 63, 276-289, (2005) · Zbl 1118.74349
[11] Dolbow, J.; Moës, N.; Belytschko, T., Modeling fracture in mindlin – reissner plates with the extended finite element method, Int. J. solids struct., 37, 7161-7183, (2000) · Zbl 0993.74061
[12] Cirak, F.; Ortiz, M.; Pandolfi, A., A cohesive approach to thin-shell fracture and fragmentation, Comput. methods appl. mech. engrg., 194, 2604-2618, (2005) · Zbl 1082.74052
[13] Lee, Y.-W.; Woertz, J.C.; Wierzbicki, T., Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification, Int. J. mech. sci., 46, 751-781, (2004)
[14] Lee, E.H., Elasto-plastic deformation at finite strains, ASME J. appl. mech., 36, 1-6, (1969) · Zbl 0179.55603
[15] Baaser, H., The Padé-approximation for matrix exponentials applied to an integration algorithm preserving plastic incompressibility, Computat. mech., 34, 237-245, (2004) · Zbl 1138.74416
[16] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 131-150, (1999) · Zbl 0955.74066
[17] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. methods engrg., 45, 601-620, (1999) · Zbl 0943.74061
[18] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int. J. numer. methods engrg., 50, 993-1013, (2001) · Zbl 0981.74062
[19] Antman, S.S.; Marlow, R.S., Material constraints, Lagrange multipliers, and compatibility. applications to rod and shell theories, Arch. rat. mech. anal., 116, 257-299, (1991) · Zbl 0769.73012
[20] Areias, P.; Belytschko, T., A comment on the article “A finite element method for simulation of strong and weak discontinuities in solid mechanics” by A. Hansbo and P. Hansbo [comput. methods appl. mech. engrg. 193 (2004)], Comput. methods appl. mech. engrg., 193, 3523-3540, (2004)
[21] Miehe, C., A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric, Int. J. solids struct., 35, 30, 3859-3897, (1998) · Zbl 0935.74022
[22] Brunig, M., Large strain elasto-plastic theory and nonlinear finite element analysis based on metric transformation tensors, Computat. mech., 24, 187-196, (1999) · Zbl 0977.74008
[23] Han, W.; Reddy, B.D., Plasticity. mathematical theory and numerical analysis, Interdisciplinary applied mathematics, vol. 9, (1999), Springer · Zbl 0926.74001
[24] Simó, J.C.; Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. methods appl. mech. engrg., 49, 221-245, (1985) · Zbl 0566.73035
[25] Areias, P.M.A.; César de Sá, J.M.A.; Conceicão António, C.A., A gradient model for finite strain elastoplasticity coupled with damage, Finite elem. anal. des., 39, 1191-1235, (2003)
[26] Areias, P.M.A.; Belytschko, T., Analysis of three-dimensional crack initiation and propagation using the extended finite element method, Int. J. numer. methods engrg., 63, 760-788, (2005) · Zbl 1122.74498
[27] Areias, P.M.A.; César de Sá, J.M.A.; Conceicão António, C.A.; Carneiro, J.A.S.A.O.; Teixeira, V.M.P., Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems, Computat. mech., 35, 54-71, (2004) · Zbl 1109.74350
[28] Ahmad, S.; Irons, B.M.; Zienkiewicz, O.C., Analysis of thick and thin shell structures by curved finite elements, Int. J. numer. methods engrg., 2, 419-451, (1970)
[29] Deuflhard, P., Newton methods for nonlinear problems, affine invariance and adaptive algorithms, (2004), Springer · Zbl 1056.65051
[30] Jirásek, M., Comparative study on finite elements with embedded discontinuities, Comput. methods appl. mech. engrg., 188, 307-330, (2000) · Zbl 1166.74427
[31] F. Armero, D. Ehrlich, Finite element methods for the multi-scale modeling of softening hinge lines in plates at failure, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2005.05.040. · Zbl 1129.74043
[32] J.E. Ash, T.J. Marciniak, Comparisons of finite-element code calculations to hydrostatically-loaded subassembly duct experiments, Technical Report ANL/RAS 75-31, Argonne National Laboratory, Reactor Analysis and Safety Division, 9700 South Cass Avenue, Argonne, Illinois 60439, August 1975.
[33] Keesecker, A.L.; Davila, C.G.; Johnson, E.R.; Starnes, J.H., Crack path bifurcation at a tear strap in a pressurized shell, Computers and structures, 81, 1633-1642, (2003)
[34] Budiman, H.T.; Lagace, P.A., Nondimensional parameters for geometric nonlinear effects in pressurized cylinders with axial cracks, ASME J. appl. mech., 64, 401-407, (1997) · Zbl 0899.73294
[35] Muscat-Fenech, C.M.; Atkins, A.G., Out-of-plane stretching and tearing fracture in ductile sheet materials, Int. J. fracture, 84, 297-306, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.