×

zbMATH — the first resource for mathematics

Soft sets and soft groups. (English) Zbl 1119.03050
Inf. Sci. 177, No. 13, 2726-2735 (2007); erratum ibid. 179, No. 3, 338 (2009).
Summary: Molodtsov introduced the concept of soft set theory, which can be used as a generic mathematical tool for dealing with uncertainty. In this paper we introduce the basic properties of soft sets, and compare soft sets to the related concepts of fuzzy sets and rough sets. We then give a definition of soft groups, and derive their basic properties using Molodtsov’s definition of the soft sets.

MSC:
03E72 Theory of fuzzy sets, etc.
20N25 Fuzzy groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Biswas, R.; Nanda, S., Rough groups and rough subgroups, Bull. Polish acad. math., 42, 251-254, (1994) · Zbl 0834.68102
[2] Bonikowaski, Z., Algebraic structures of rough sets, (), 242-247
[3] Chakrabarty, K.; Biswas, R.; Nanda, S., Fuzziness in rough sets, Fuzzy sets syst., 110, 2, 247-251, (2000) · Zbl 0943.03040
[4] Chanas, S.; Kuchta, D., Further remarks on the relation between rough and fuzzy sets, Fuzzy sets syst., 47, 391-394, (1992) · Zbl 0755.04008
[5] Chen, D.; Tsang, E.C.C.; Yeung, D.S.; Wang, X., The parameterization reduction of soft sets and its applications, Comput. math. appl., 49, 757-763, (2005) · Zbl 1074.03510
[6] Dubois, D.; Prade, H., Fuzzy set and systems: theory and applications, (1980), Academic Press New York
[7] Dubois, D.; Prade, H., ()
[8] Iwinski, T., Algebraic approach to rough sets, Bull. Polish acad. sci. math., 35, 673-683, (1987) · Zbl 0639.68125
[9] Klir, G.J.; Folger, T.A., Fuzzy sets, uncertainty and information, (1988), Prentice-Hall · Zbl 0675.94025
[10] Maji, P.K.; Bismas, R.; Roy, A.R., Soft set theory, Comput. math. appl., 45, 555-562, (2003) · Zbl 1032.03525
[11] Maji, P.K.; Roy, A.R.; Biswas, R., An application of soft sets in a decision making problem, Comput. math. appl., 44, 1077-1083, (2002) · Zbl 1044.90042
[12] Molodtsov, D., The theory of soft sets (in Russian), (2004), URSS Publishers Moscow
[13] Molodtsov, D., Soft set theory-first results, Comput. math. appl., 37, 19-31, (1999) · Zbl 0936.03049
[14] Pawlak, Z., Rough sets, Int. J. inform. comput. sci., 11, 341-356, (1982) · Zbl 0501.68053
[15] Pawlak, Z., Rough sets and fuzzy sets, Fuzzy sets syst., 17, 99-102, (1985) · Zbl 0588.04004
[16] Pawlak, Z., Rough sets: theoretical aspects of reasoning about data, (1991), Kluwer Academic Publishers Boston · Zbl 0758.68054
[17] Pawlak, Z.; Skowron, A., Rough membership function, (), 251-271
[18] Pawlak, Z.; Skowron, A., Rudiments of rough sets, Inform. sci., 177, 3-27, (2007) · Zbl 1142.68549
[19] Pedrycz, W.; Han, L.; Peters, J.F.; Ramanna, S.; Zhai, R., Calibration of software quality: fuzzy neural and rough neural computing approaches, Neurocomputing, 36, 1-4, 149-170, (2001) · Zbl 1003.68635
[20] Peters, J.F.; Suraj, Z.; Shan, S.; Ramanna, S.; Pedrycz, W.; Pizzi, N.J., Classification of meteorological volumetric radar data using rough set methods, Pattern recog. lett., 24, 6, 911-920, (2003)
[21] Radzikowska, A.M.; Kerre, E.E., A comparative study of fuzzy rough sets, Fuzzy sets syst., 126, 6, 137-156, (2002) · Zbl 1004.03043
[22] Rosenfeld, A., Fuzzy groups, J. math. anal. appl., 35, 512-517, (1971) · Zbl 0194.05501
[23] Skowron, A., Rough sets and Boolean reasoning, (), 95-124 · Zbl 0986.68143
[24] Walczak, B.; Massart, D.L., Rough sets theory, Chemometrics intell. lab. syst., 47, 1-16, (1999)
[25] Wygralak, M., Rough sets and fuzzy sets – some remarks on interrelations, Fuzzy sets syst., 29, 241-243, (1989) · Zbl 0664.04010
[26] Yao, Y.Y., A comparative study of fuzzy sets and rough sets, Inform. sci., 109, 227-242, (1998) · Zbl 0932.03064
[27] Zadeh, L.A., Toward a generalized theory of uncertainty (GTU) - an outline, Inform. sci., 172, 1-40, (2005) · Zbl 1074.94021
[28] Zadeh, L.A., Fuzzy sets, Inform. control, 8, 338-353, (1965) · Zbl 0139.24606
[29] Zimmermann, H.-J., Fuzzy set theory and its applications, (1993), Kluwer Academic Publishers
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.