×

zbMATH — the first resource for mathematics

Growth and breakdown of low-speed streaks leading to wall turbulence. (English) Zbl 1118.76003
Summary: Two-dimensional local wall suction is applied to a fully developed turbulent boundary layer such that near-wall turbulence structures are completely sucked out, but most of the turbulent vortices in the original outer layer can survive the suction and cause the resulting laminar flow to undergo re-transition. This enables us to observe and clarify the whole process by which the suction-surviving strong vortical motions give rise to near-wall low-speed streaks and eventually generate wall turbulence. Hot-wire and particle image velocimetry measurements show that low-frequency velocity fluctuations, which are markedly suppressed near the wall by the local wall suction, soon start to grow downstream of the suction. The growth of low-frequency fluctuations is algebraic. This characterizes the streak growth caused by the suction-surviving turbulent vortices. The low-speed streaks obtain almost the same spanwise spacing as that of the original turbulent boundary layer without the suction even in the initial stage of the streak development. This indicates that the suction-surviving turbulent vortices are efficient in exciting the necessary ingredients for the wall turbulence, namely, low-speed streaks of the correct scale. After attaining near-saturation, the low-speed streaks soon undergo sinuous instability to lead to re-transition. Flow visualization shows that the streak instability and its subsequent breakdown occur at random in space and time in spite of the spanwise arrangement of streaks being almost periodic. Even under the high-intensity turbulence conditions, the sinuous instability amplifies disturbances of almost the same wavelength as predicted from the linear stability theory, though the actual growth is in the form of a wave packet with not more than two waves. It should be emphasized that the mean velocity develops the log-law profile as the streak breakdown proceeds. The transient growth and eventual breakdown of low-speed streaks are also discussed in connection with the critical condition for the wall-turbulence generation.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.1521124 · Zbl 1185.76394 · doi:10.1063/1.1521124
[2] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
[3] DOI: 10.1017/S0022112083000634 · doi:10.1017/S0022112083000634
[4] DOI: 10.1017/S002211200100667X · Zbl 1141.76408 · doi:10.1017/S002211200100667X
[5] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[6] DOI: 10.1017/S0022112098001323 · Zbl 0927.76029 · doi:10.1017/S0022112098001323
[7] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[8] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040 · doi:10.1017/S0022112091002033
[9] Jeong, J. Fluid Mech. 332 pp 185– (1997)
[10] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[11] DOI: 10.1143/JPSJ.70.703 · doi:10.1143/JPSJ.70.703
[12] DOI: 10.1017/S0022112002002331 · Zbl 1163.76359 · doi:10.1017/S0022112002002331
[13] DOI: 10.1063/1.863490 · Zbl 0466.76030 · doi:10.1063/1.863490
[14] DOI: 10.1016/j.euromechflu.2006.04.008 · Zbl 1151.76452 · doi:10.1016/j.euromechflu.2006.04.008
[15] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[16] DOI: 10.1017/S0022112001007431 · doi:10.1017/S0022112001007431
[17] DOI: 10.1063/1.1773493 · Zbl 1187.76162 · doi:10.1063/1.1773493
[18] DOI: 10.1063/1.869962 · Zbl 1147.76382 · doi:10.1063/1.869962
[19] DOI: 10.1017/S0022112003004427 · Zbl 1055.76019 · doi:10.1017/S0022112003004427
[20] DOI: 10.1017/S0022112095003028 · doi:10.1017/S0022112095003028
[21] DOI: 10.1063/1.868690 · doi:10.1063/1.868690
[22] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[23] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[24] DOI: 10.1017/S0022112085000210 · doi:10.1017/S0022112085000210
[25] DOI: 10.1017/S0022112073000790 · doi:10.1017/S0022112073000790
[26] DOI: 10.1017/S0022112000002810 · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[27] DOI: 10.1063/1.1758152 · Zbl 1186.76339 · doi:10.1063/1.1758152
[28] DOI: 10.1017/S0022112099007259 · Zbl 0959.76022 · doi:10.1017/S0022112099007259
[29] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[30] DOI: 10.1016/j.fluiddyn.2004.02.003 · Zbl 1058.76510 · doi:10.1016/j.fluiddyn.2004.02.003
[31] DOI: 10.1017/S0022112001006243 · Zbl 0996.76034 · doi:10.1017/S0022112001006243
[32] DOI: 10.1063/1.1378070 · Zbl 1184.76562 · doi:10.1063/1.1378070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.