×

Space-time finite element techniques for computation of fluid-structure interactions. (English) Zbl 1118.74052

Summary: We describe the space-time finite element techniques for computation of fluid-structure interaction (FSI) problems. Among these techniques are the deforming-spatial-domain/stabilized space-time formulation and its special version, and the mesh update methods, including the solid-extension mesh moving technique. Also among these techniques are the block-iterative, quasi-direct and direct coupling methods for the solution of fully discretized, coupled fluid and structural mechanics equations. We present some test computations for the mesh moving techniques. We also present numerical examples where the fluid is governed by incompressible Navier-Stokes equations and the structure is governed by membrane and cable equations. Overall, we demonstrate that the techniques have increased the scope and accuracy of methods used in the computation of FSI problems.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ohayon, R., Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems, Comput. methods appl. mech. engrg., 190, 3009-3019, (2001) · Zbl 0971.74032
[2] Park, K.C.; Felippa, C.A.; Ohayon, R., Partitioned formulation of internal fluid-structure interaction problems by localized Lagrange multipliers, Comput. methods appl. mech. engrg., 190, 2989-3007, (2001) · Zbl 0983.74022
[3] Ohayon, R.; Felippa, C., Advances in computational methods for fluid-structure interaction and coupled problems, Comput. methods appl. mech. engrg., 190, (2001)
[4] Tezduyar, T.E., Stabilized finite element formulations for incompressible flow computations, Adv. appl. mech., 28, 1-44, (1992) · Zbl 0747.76069
[5] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[6] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[7] Tezduyar, T.E., Finite element methods for flow problems with moving boundaries and interfaces, Arch. comput. methods engrg., 8, 83-130, (2001) · Zbl 1039.76037
[8] Hughes, T.J.R.; Brooks, A.N., A multi-dimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[9] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[10] T.E. Tezduyar, T.J.R. Hughes, Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations, in: Proceedings of AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, NV, 1983.
[11] Hughes, T.J.R; Tezduyar, T.E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. methods appl. mech. engrg., 45, 217-284, (1984) · Zbl 0542.76093
[12] Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. methods appl. mech. engrg., 95, 221-242, (1992) · Zbl 0756.76048
[13] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[14] Hughes, T.J.R.; Hulbert, G.M., Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. methods appl. mech. engrg., 66, 339-363, (1988) · Zbl 0616.73063
[15] Tezduyar, T.E.; Behr, M.; Mittal, S.; Johnson, A.A., Computation of unsteady incompressible flows with the finite element methods—space-time formulations, iterative strategies and massively parallel implementations, (), 7-24
[16] T. Tezduyar, Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces, in Proceedings of the ASME Symposium on Fluid-Physics and Heat Transfer for Macro- and Micro-Scale Gas-Liquid and Phase-Change Flows (CD-ROM), ASME Paper IMECE2001/HTD-24206, ASME, New York, 2001.
[17] Tezduyar, T.E., Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows, (), 221-239 · Zbl 1059.76038
[18] T. Tezduyar, Interface-tracking and interface-capturing techniques for computation of moving boundaries and interfaces, in: Proceedings of the Fifth World Congress on Computational Mechanics, Paper-ID: 81513, Vienna, Austria, 2002. Available from: <http://wccm.tuwien.ac.at/>.
[19] Stein, K.; Benney, R.; Kalro, V.; Tezduyar, T.E.; Leonard, J.; Accorsi, M., Parachute fluid-structure interactions: 3-D computation, Comput. methods appl. mech. engrg., 190, 373-386, (2000) · Zbl 0973.76055
[20] Stein, K.; Benney, R.; Tezduyar, T.; Potvin, J., Fluid-structure interactions of a cross parachute: numerical simulation, Comput. methods appl. mech. engrg., 191, 673-687, (2001) · Zbl 0999.76085
[21] Stein, K.R.; Benney, R.J.; Tezduyar, T.E.; Leonard, J.W.; Accorsi, M.L., Fluid-structure interactions of a round parachute: modeling and simulation techniques, J. aircraft, 38, 800-808, (2001)
[22] Stein, K.; Tezduyar, T.; Kumar, V.; Sathe, S.; Benney, R.; Thornburg, E.; Kyle, C.; Nonoshita, T., Aerodynamic interactions between parachute canopies, J. appl. mech., 70, 50-57, (2003) · Zbl 1110.74690
[23] T.E. Tezduyar, Interface-tracking, interface-capturing and enhanced solution techniques, in: Proceedings of the First South-American Congress on Computational Mechanics (CD-ROM), Santa Fe-Parana, Argentina, 2002.
[24] Tezduyar, T.E., Finite element methods for fluid dynamics with moving boundaries and interfaces, (), (Chapter 17) · Zbl 0848.76036
[25] Mittal, S.; Tezduyar, T.E., A finite element study of incompressible flows past oscillating cylinders and airfoils, Int. J. numer. methods fluids, 15, 1073-1118, (1992)
[26] Mittal, S.; Tezduyar, T.E., Parallel finite element simulation of 3D incompressible flows—fluid-structure interaction, Int. J. numer. methods fluids, 21, 933-953, (1995) · Zbl 0873.76047
[27] Tezduyar, T.; Osawa, Y., Fluid-structure interactions of a parachute crossing the far wake of an aircraft, Comput. methods appl. mech. engrg., 191, 717-726, (2001) · Zbl 1113.76407
[28] Green, A.E.; Adkins, J.E., Large elastic deformations, (1960), Oxford Clarendon Press Amen House, London, UK · Zbl 0090.17501
[29] Green, A.E.; Zerna, W., Theoretical elasticity, (1968), Oxford Clarendon Press Ely House, London, UK · Zbl 0155.51801
[30] Accorsi, M.L.; Leonard, J.W.; Benney, R.; Stein, K., Structural modeling of parachute dynamics, Aiaa j., 38, 139-146, (2000)
[31] Tezduyar, T.E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. methods appl. mech. engrg., 190, 411-430, (2000) · Zbl 0973.76057
[32] Tezduyar, T.E., Computation of moving boundaries and interfaces and stabilization parameters, Int. J. numer. methods fluids, 43, 555-575, (2003) · Zbl 1032.76605
[33] Hilber, H.M.; Hughes, T.J.R.; Taylor, R.L., Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq. engrg. struct. dynam., 5, 283-292, (1977)
[34] Lynch, D.R., Wakes in liquid-liquid systems, J. comput. phys., 47, 387-411, (1982)
[35] Masud, A.; Hughes, T.J.R., A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Comput. methods appl. mech. engrg., 146, 91-126, (1997) · Zbl 0899.76259
[36] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid-structure interactions with large displacements, J. appl. mech., 70, 58-63, (2003) · Zbl 1110.74689
[37] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, IEEE comput., 26, 27-36, (1993)
[38] K. Stein, T. Tezduyar, R. Benney, Mesh update with solid-extension mesh moving technique, in: Pre-Conference Proceedings of the Sixth Japan-US International Symposium on Flow Simulation and Modeling, Fukuoka, Japan, 2002. · Zbl 1067.74587
[39] K. Stein, T. Tezduyar, Advanced mesh update techniques for problems involving large displacements, in: Proceedings of the Fifth World Congress on Computational Mechanics, Paper-ID: 81489, Vienna, Austria, 2002. Available from: <http://wccm.tuwien.ac.at/>.
[40] Stein, K.; Tezduyar, T.E.; Benney, R., Automatic mesh update with the solid-extension mesh moving technique, Comput. methods appl. mech. engrg., 193, 2019-2032, (2004) · Zbl 1067.74587
[41] Johnson, A.A.; Tezduyar, T.E., Simulation of multiple spheres falling in a liquid-filled tube, Comput. methods appl. mech. engrg., 134, 351-373, (1996) · Zbl 0895.76046
[42] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
[43] T.E. Tezduyar, Stabilized finite element methods for computation of flows with moving boundaries and interfaces, in: Lecture Notes on Finite Element Simulation of Flow Problems (Basic-Advanced Course), Japan Society of Computational Engineering and Sciences, Tokyo, Japan, 2003.
[44] H. Watanabe T. Hisada, S. Sugiura, Fluid-structure interaction analysis of human heart by ALE finite element method, in: Seventh US National Congress on Computational Mechanics, Albuquerque, NM, 2003.
[45] Hughes, T.J.R, The finite element method. linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.