×

zbMATH — the first resource for mathematics

Multiresolution analysis for material design. (English) Zbl 1118.74040
Summary: The relationship between material microstructure and properties is the key to optimization and design of lightweight, strong, tough materials. Material properties are inherently a function of the microscale interactions at each distinct scale of deformation in a material. Currently, we rely on empirical data to define the structure-property link in the material design chain. A model is proposed here in which a material is physically and mathematically decomposed to each individual scale of interest. Material deformation can subsequently be resolved to each of these scales. Constitutive behavior at each scale can be determined by analytically or computationally examining the micromechanics at each scale. This is illustrated for a polycrystalline material, a granular material, a porous material and an alloy containing particles at two scales. A potential use for a bio-inspired self-healing composite is also discussed. The theory can then be applied computationally in a finite element framework to determine overall material properties in terms of the constitutive behavior at each scale, without resorting to empiricism.

MSC:
74Q15 Effective constitutive equations in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borrego, A.; Fernandez, R.; del Carmen Cristina, M.; Ibanez, J.; Gonzalez-Doncel, G., Influence of extrusion temperature on the microstructure and the texture of 6061al-15vol.% sicw PM composites, Compos. sci. technol., 62, 731-742, (2002)
[2] P.T. Wang, W.H. Van Geertruyden, W.Z. Misiolek, Proceedings from Materials Solutions Conference 2003: 1st International Symposium on Metallurgical Modeling for Aluminum Alloys, 2003, pp. 199-208.
[3] Brand, A.J.; Kalz, S.; Kopp, R., Microstructural simulation in hot rolling of aluminium alloys, Computat. mater. sci., 7, 242-246, (1996)
[4] Karhausen, K.F.; Roters, F., Development and application of constitutive equations for multiple-stand hot rolling of al-alloys, J. mater. process. technol., 123, 155-166, (2002)
[5] Sellars, C.M.; Zhu, Q., Microstructural modeling of aluminium alloys during thermomechanical processing, Mater. sci. engrg., A280, 1-7, (2000)
[6] Sutton, M.A.; Yang, B.; Reynolds, A.P.; Taylor, R., Microstructural studies of friction welds in 2024-T3 aluminum, Mater. sci. engrg. A, 323, 160-166, (2002)
[7] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley Chichester, New York · Zbl 0959.74001
[8] Li, S.; Liu, W.K., Meshfree particle methods, (2004), Springer Berlin · Zbl 1073.65002
[9] Bammann, D.J.; Chiesa, M.L.; Johnson, G.C., Modeling large deformation and failure in manufacturing processes, Proc. 19th ICTAM, 359-378, (1996)
[10] Horstemeyer, M.F.; Ramaswamy, S.; Negrete, M., Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase, Mech. mater., 35, 675-687, (2003)
[11] Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile material, J. engrg. mater. technol., 99, 2-15, (1997)
[12] Hao, S.; Liu, W.K.; Chang, C.T., Computer implementation of damage models by finite element and meshfree methods, Computat. methods appl. mech. engrg., 187, 401-440, (2000) · Zbl 0980.74063
[13] Hao, S.; Liu, W.K.; Moran, B.; Vernerey, F.; Olson, G.B., Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels, Comput. methods appl. mech. engrg., 193, 17-20, 1865-1908, (2004) · Zbl 1079.74504
[14] Bazant, Z.P., Nonlocal integral formulations of plasticity and damage: survey of progress, J. engrg. mech., 128, 11, 1119-1149, (2002)
[15] F. Vernerey, W.K. Liu, B. Moran, Northwestern University, Illinois, in preparation.
[16] Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W., Strain gradient plasticity: theory and experiment, Acta metall. mater., 42, 2, 475-487, (1994)
[17] Stolken, J.S.; Evans, A.G., Microbend test method for measuring the plasticity length scale, Acta mater., 46, 14, 5109-5115, (1998)
[18] Nix, W.D.; Mehl Medalist, R.F., Mechanical properties of thin films, Metall. trans. A (phys. metall. mater. sci.), 20(A), 11, 2217-2245, (1989)
[19] Fleck, N.A.; Hutchinson, J.W., Strain gradient plasticity, Adv. appl. mech., 33, 296-358, (1997) · Zbl 0894.73031
[20] Gao, H.; Huang, Y.; Nix, W.D.; Hutchinson, J.W., Mechanism-based strain gradient plasticity theory, J. mech. phys. solids, 47, 1239-1263, (1999) · Zbl 0982.74013
[21] Chen, S.H.; Wang, T.C., A new hardening law for strain gradient plasticity, Acta mater., 48, 3997-4005, (2000)
[22] Knowlton, T.M.; Carson, J.W.; Klinzing, G.E.; Yang, W.-C., The importance of storage, transfer, and collection, Chem. engrg. progr., 90, 4, 44-54, (1994)
[23] Kadowaki, H.; Liu, W.K., Bridging multiscale method for localization problems, Comput. methods appl. mech. engrg., 193, 3267-3302, (2004) · Zbl 1060.74504
[24] Bazant, Z.P.; Belytschko, T.B.; Chang, T., Continuum theory for strain softening, J. engrg. mech., 110, 12, 1666-1692, (1984)
[25] Green, G.; Knot, J.F., Initiation and propagation of ductile fracture in low strength steels, J. engrg. mater. technol., 98, 37-46, (1976)
[26] Horstemeyer, M.F.; Matalanis, M.M.; Sieber, A.M.; Botos, M.L., Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence, Int. J. plast., 16, 979-1015, (2000) · Zbl 0969.74596
[27] Edelson, B.I.; Baldwin, W.M., Effect of second phases on mechanical properties of alloys, ASM trans., 55, 1, 230-250, (1962)
[28] SRI Consulting Business Intelligence, Next-Generation Technologies: Self-Repairing Structural Materials, 2004. Available from: <www.sric-bi.com>.
[29] B.S. Files, Design of a biomimetic self-healing superalloy composite, Materials Science and Engineering, Evanston, Northwestern University, 1997.
[30] C. Forbell, M. Barney, C. Scharff, W. Lai, Tin Based Self-Healing Alloy, Student Design Team, Northwestern University, 1997.
[31] Shimamoto, A.; Nam, J., Effect of crack closure by shrinkage of embedded shape-memory tini fiber epoxy composite under mixed-mode loading, Int. J. mater. product technol., 1, 263-268, (2001)
[32] X. Gao, D. Burton, L.C. Brinson, Finite element simulation of a self-healing shape memory alloy composite, Mech. Mater., in press.
[33] Hamada, K.; Kawano, F., Shape recovery of shape memory alloy fiber embedded resin matrix smart composite after crack repair, Dental mater. J., 22, 2, 160-167, (2003)
[34] Tanaka, K.S.; Kobayashi, S.; Sato, Y., Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, Int. J. plast., 2, 1, 59-72, (1986)
[35] Liang, C.; Rogers, C.A., One-dimensional thermomechanical constitutive relations for shape memory materials, J. intell. mater. syst. struct., 1, 2, 207-234, (1990)
[36] Brinson, L.C., One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions, J. intell. mater. syst. struct., 4, 2, 229-242, (1993)
[37] Brinson, L.C.; Huang, M.S., Simplifications and comparisons of shape memory alloy constitutive models, J. intell. mater. syst. struct., 7, 1, 108-114, (1996)
[38] Bekker, A.; Brinson, L.C., Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta mater., 46, 10, 3649-3665, (1998) · Zbl 0923.47043
[39] Jiang, H.; Valdez, J., Strength and toughness of cement reinforced with bone-shaped steel wires, Compos. sci. technol., 60, 9, 1753-1761, (2000)
[40] Zhu, Y.T.T.; Beyerlein, I.J., Bone-shaped short fiber composites—an overview, Mater. sci. engrg. A—struct. mater. prop. microstruct. process., 326, 2, 208-227, (2002)
[41] Zhu, Y.T.T.; Beyerlein, I.J., Issues on the design of bone-shaped short fiber composites, J. adv. mater., 35, 2, 51-60, (2003)
[42] Zhu, Y.T.T.; Beyerlein, I.J.; Valdez, J.A.; Lowe, T.C., Fracture toughness of a composite reinforced with bone-shaped short fibers, Mater. sci. engrg. A, 317, 1-2, 93-100, (2001)
[43] Liu, W.K.; Karpov, E.G.; Zhang, S.; Park, H.S., An introduction to computational nanomechanics and materials, Comput. methods appl. mech. engrg., 193, 17-20, 1529-1578, (2004) · Zbl 1079.74506
[44] E. Cosserat, F. Cosserat, Theorie des Corps Deformable, A Hermann et Fils, Paris, 1909.
[45] Kadowaki, H.; Liu, W.K., A multiscale approach for the micropolar continuum model, Comput. model. engrg. sci., 7, 3, 269-282, (2005) · Zbl 1107.74004
[46] Park, H.S.; Liu, W.K., An introduction and tutorial on multiple-scale analysis in solids, Comput. methods appl. mech. engrg., 93, 7-20, 1733-1772, (2004) · Zbl 1079.74508
[47] Liu, W.K.; Uras, R.A.; Chen, Y., Enrichment of the finite element method with the reproducing kernel particle method, J. appl. mech. ASME, 64, 861-870, (1997) · Zbl 0920.73366
[48] Wagner, G.J.; Liu, W.K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. computat. phys., 190, 249-274, (2003) · Zbl 1169.74635
[49] Courtney, T.H., Mechanical behavior of solids, (2000), McGraw Hill Boston
[50] Hao, S.; Moran, B.; Liu, W.K.; Olson, G.B., A hierarchical multi-physics constitutive model for steels design, J. comput.-aided mater. des., 10, 99-142, (2003)
[51] Fisher, F.T.; Brinson, L.C., Viscoelastic behavior of polymer matrix composites with interphase effects: theoretical models and finite element analysis, Compos. sci. technol., 61, 731-748, (2001)
[52] Christensen, R.M., A critical evaluation for a class of micromechanics models, J. mech. phys. solids, 38, 3, 379-404, (1990)
[53] C. McVeigh, W.K. Liu, Prediction of central bursting during axisymmetric cold extrusion of a metal alloy containing particles, Int. J. Solids Struct., in press. · Zbl 1120.74642
[54] Muhlhaus, H.B.; Vardoulakis, I., The thickness of shear bands in granular materials, Geotechnique, 37, 3, 271-283, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.