×

zbMATH — the first resource for mathematics

Gauge fields, fermions and mass gaps in 6D brane worlds. (English) Zbl 1117.83381
Summary: We study fluctuations about axisymmetric warped brane solutions in 6D minimal gauged supergravity. Much of our analysis is general and could be applied to other scenarios. We focus on bulk sectors that could give rise to Standard Model gauge fields and charged matter. We reduce the dynamics to Schrödinger type equations plus physical boundary conditions, and obtain exact solutions for the Kaluza-Klein wave functions and discrete mass spectra. The power-law warping, as opposed to exponential in 5D, means that zero mode wave functions can be peaked on negative tension branes, but only at the price of localizing the whole Kaluza - Klein tower there. However, remarkably, the codimension two defects allow the Kaluza-Klein mass gap to remain finite even in the infinite volume limit. In principle, not only gravity, but Standard Model fields could ‘feel’ the extent of large extra dimensions, and still be described by an effective 4D theory.

MSC:
83E30 String and superstring theories in gravitational theory
83E50 Supergravity
81V25 Other elementary particle theory in quantum theory
83E15 Kaluza-Klein and other higher-dimensional theories
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aghababaie, Y.; Burgess, C.P.; Parameswaran, S.L.; Quevedo, F., SUSY breaking and moduli stabilization from fluxes in gauged 6D supergravity, Jhep, 0303, 032, (2003)
[2] Aghababaie, Y.; Burgess, C.P.; Parameswaran, S.L.; Quevedo, F.; Burgess, C.P., Supersymmetric large extra dimensions and the cosmological constant problem, Nucl. phys. B, 680, 389, (2004) · Zbl 1036.83025
[3] Randall, L.; Sundrum, R.; Randall, L.; Sundrum, R., An alternative to compactification, Phys. rev. lett., Phys. rev. lett., 83, 4690, (1999) · Zbl 0946.81074
[4] Gibbons, G.W.; Güven, R.; Pope, C.N., 3-branes and uniqueness of the salam – sezgin vacuum, Phys. lett. B, 595, 498, (2004) · Zbl 1247.81373
[5] Aghababaie, Y., Warped brane worlds in six-dimensional supergravity, Jhep, 0309, 037, (2003)
[6] Burgess, C.P.; Quevedo, F.; Tasinato, G.; Zavala, I., General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, Jhep, 0411, 069, (2004)
[7] Chang, S.; Hisano, J.; Nakano, H.; Okada, N.; Yamaguchi, M., Bulk standard model in the randall – sundrum background, Phys. rev. D, 62, 084025, (2000)
[8] Rubakov, V.A.; Shaposhnikov, M.E., Do we live inside a domain wall?, Phys. lett. B, 125, 136, (1983)
[9] Goldberger, W.D.; Wise, M.B.; Davoudiasl, H.; Hewett, J.L.; Rizzo, T.G.; Gherghetta, T.; Pomarol, A., Bulk fields and supersymmetry in a slice of AdS, Phys. rev. D, Phys. lett. B, Nucl. phys. B, 586, 141, (2000), For some early works see:
[10] Nishino, H.; Sezgin, E., Matter and gauge couplings of \(N = 2\) supergravity in six dimensions, Phys. lett. B, 144, 187, (1984)
[11] Randjbar-Daemi, S.; Salam, A.; Sezgin, E.; Strathdee, J.A., An anomaly free model in six dimensions, Phys. lett. B, 151, 351, (1985)
[12] Lee, H.M.; Papazoglou, A., Scalar mode analysis of the warped salam – sezgin model, Nucl. phys. B, 747, 294, (2006) · Zbl 1178.83058
[13] Avramis, S.D.; Kehagias, A.; Randjbar-Daemi, S.; Avramis, S.D.; Kehagias, A.; Suzuki, R.; Tachikawa, Y., More anomaly free models of six-dimensional gauged supergravity, Jhep, Jhep, 0510, 052, (2005)
[14] Nishino, H.; Sezgin, E., The complete \(N = 2\), \(D = 6\) supergravity with matter and yang – mills couplings, Nucl. phys. B, 278, 353, (1986)
[15] Randjbar-Daemi, S.; Sezgin, E., Scalar potential and dyonic strings in 6d gauged supergravity, Nucl. phys. B, 692, 346, (2004) · Zbl 1151.83365
[16] Chen, J.W.; Luty, M.A.; Ponton, E., A critical cosmological constant from millimeter extra dimensions, Jhep, 0009, 012, (2000) · Zbl 0990.83536
[17] Tolley, A.J.; Burgess, C.P.; Hoover, D.; Aghababaie, Y., Bulk singularities and the effective cosmological constant for higher co-dimension branes, Jhep, 0603, 091, (2006) · Zbl 1226.81233
[18] Lee, H.M.; Ludeling, C., The general warped solution with conical branes in six-dimensional supergravity, Jhep, 0601, 062, (2006)
[19] Parameswaran, S.L.; Tasinato, G.; Zavala, I., The 6D superswirl, Nucl. phys. B, 737, 49, (2006) · Zbl 1109.83015
[20] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R.; Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R., New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. lett. B, Phys. lett. B, 436, 257, (1998)
[21] Giovannini, M., Graviphoton and graviscalars delocalization in brane world scenarios
[22] Giovannini, M.; Le Be, J.V.; Riederer, S., Zero modes of six-dimensional abelian vortices, Class. quantum grav., 19, 3357, (2002) · Zbl 1003.83038
[23] Randjbar-Daemi, S.; Shaposhnikov, M., A formalism to analyze the spectrum of brane world scenarios, Nucl. phys. B, 645, 188, (2002) · Zbl 0999.83051
[24] Randjbar-Daemi, S.; Shaposhnikov, M., QED from six-dimensional vortex and gauge anomalies, Jhep, 0304, 016, (2003)
[25] Nicolai, H.; Wetterich, C., On the spectrum of kaluza – klein theories with noncompact internal spaces, Phys. lett. B, 150, 347, (1985)
[26] Gibbons, G.W.; Wiltshire, D.L., Space – time as a membrane in higher dimensions, Nucl. phys. B, 287, 717, (1987)
[27] Kehagias, A., On non-compact compactifications with brane worlds
[28] Manning, M.F., Exact solutions of the schroedinger equation, Phys. rev., 48, 161, (1935) · JFM 61.1175.04
[29] Randjbar-Daemi, S.; Salam, A.; Strathdee, J.A., Spontaneous compactification in six-dimensional einstein – maxwell theory, Nucl. phys. B, 214, 491, (1983)
[30] Wetterich, C., Chiral fermions in six-dimensional gravity, Nucl. phys. B, 253, 366, (1985)
[31] Schwindt, J.M.; Wetterich, C., Holographic branes, Phys. lett. B, 578, 409, (2004) · Zbl 1246.81303
[32] Carroll, S.M.; Guica, M.M., Sidestepping the cosmological constant with football-shaped extra dimensions
[33] Dienes, K.R., Shape versus volume: making large flat extra dimensions invisible, Phys. rev. lett., 88, 011601, (2002) · Zbl 1255.83115
[34] Wetterich, C., The cosmological constant and noncompact internal spaces in kaluza – klein theories, Nucl. phys. B, 255, 480, (1985)
[35] Randjbar-Daemi, S.; Salam, A.; Strathdee, J.A.; Randjbar-Daemi, S.; Salam, A.; Strathdee, J.A., Instability of higher dimensional yang – mills systems, Phys. lett. B, Phys. lett. B, 144, 455, (1984), Erratum
[36] Randjbar-Daemi, S.; Rubakov, V.A., 4d-flat compactifications with brane vorticities, Jhep, 0410, 054, (2004)
[37] Whittaker, E.T.; Watson, G.N., A course for modern analysis, (1990), Cambridge Univ. Press Cambridge, England · Zbl 0108.26903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.