zbMATH — the first resource for mathematics

Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models. (English) Zbl 1117.81112
Summary: We systematically investigate instanton corrections from wrapped Euclidean D-branes to the matter field superpotential of various classes of \(N=1\) supersymmetric D-brane models in four dimensions. Both gauge invariance and the counting of fermionic zero modes provide strong constraints on the allowed non-perturbative superpotential couplings. We outline how the complete instanton computation boils down to the computation of open string disc diagrams for boundary changing operators multiplied by a one-loop vacuum diagram. For concreteness we focus on E2-instanton effects in type IIA vacua with intersecting D6-branes, however the same structure emerges for type IIB and heterotic vacua. The instantons wrapping rigid cycles can potentially destabilise the vacuum or generate perturbatively absent matter couplings such as proton decay operators, \(\mu\)-parameter or right-handed neutrino Majorana mass terms. The latter allow the realisation of the seesaw mechanism for MSSM like intersecting D-brane models.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
81V15 Weak interaction in quantum theory
Full Text: DOI arXiv
[1] Dine, M.; Seiberg, N.; Wen, X.G.; Witten, E., Nonperturbative effects on the string world sheet, Nucl. phys. B, 278, 769, (1986)
[2] Dine, M.; Seiberg, N.; Wen, X.G.; Witten, E., Nonperturbative effects on the string world sheet (II), Nucl. phys. B, 289, 319, (1987)
[3] Distler, J.; Greene, B.R., Aspects of \((2, 0)\) compactifications, Nucl. phys. B, 304, 1, (1988)
[4] Witten, E., World-sheet corrections via D-instantons, Jhep, 0002, 030, (2000) · Zbl 0959.81034
[5] Buchbinder, E.I.; Donagi, R.; Ovrut, B.A., Superpotentials for vector bundle moduli, Nucl. phys. B, 653, 400-420, (2003) · Zbl 1010.81078
[6] Buchbinder, E.I.; Donagi, R.; Ovrut, B.A., Vector bundle moduli superpotentials in heterotic superstrings and M-theory, Jhep, 0207, 066, (2002)
[7] Kachru, S.; Katz, S.; Lawrence, A.E.; McGreevy, J., Open string instantons and superpotentials, Phys. rev. D, 62, 026001, (2000)
[8] Kachru, S.; Katz, S.; Lawrence, A.E.; McGreevy, J., Mirror symmetry for open strings, Phys. rev. D, 62, 126005, (2000)
[9] Aganagic, M.; Vafa, C., Mirror symmetry, D-branes and counting holomorphic discs
[10] Becker, K.; Becker, M.; Strominger, A., Five-branes, membranes and nonperturbative string theory, Nucl. phys. B, 456, 130-152, (1995) · Zbl 0925.81161
[11] Harvey, J.A.; Moore, G.W., Superpotentials and membrane instantons
[12] Belani, K.; Kaura, P.; Misra, A., Supersymmetry of noncompact MQCD-like membrane instantons and heat kernel asymptotics
[13] Green, M.B.; Gutperle, M., Effects of D-instantons, Nucl. phys. B, 498, 195-227, (1997) · Zbl 0979.81566
[14] Gutperle, M., Aspects of D-instantons · Zbl 1053.81545
[15] Billo, M., Classical gauge instantons from open strings, Jhep, 0302, 045, (2003)
[16] Kashani-Poor, A.-K.; Tomasiello, A., A stringy test of flux-induced isometry gauging, Nucl. phys. B, 728, 135-147, (2005) · Zbl 1138.81499
[17] Witten, E., Non-perturbative superpotentials in string theory, Nucl. phys. B, 474, 343-360, (1996) · Zbl 0925.32012
[18] Blumenhagen, R.; Cvetič, M.; Langacker, P.; Shiu, G., Toward realistic intersecting D-brane models
[19] Florea, B.; Kachru, S.; McGreevy, J.; Saulina, N., Stringy instantons and quiver gauge theories
[20] Haack, M.; Krefl, D.; Lust, D.; Van Proeyen, A.; Zagermann, M., Gaugino condensates and D-terms from D7-branes
[21] McGreevy, J., On the capture of runaway quivers, ()
[22] Blumenhagen, R.; Braun, V.; Körs, B.; Lüst, D., Orientifolds of K3 and calabi – yau manifolds with intersecting D-branes, Jhep, 0207, 026, (2002)
[23] Aldazabal, G.; Franco, S.; Ibanez, L.E.; Rabadan, R.; Uranga, A.M., \(D = 4\) chiral string compactifications from intersecting branes, J. math. phys., 42, 3103-3126, (2001) · Zbl 1036.81024
[24] Klebanov, I.R.; Witten, E., Proton decay in intersecting D-brane models, Nucl. phys. B, 664, 3-20, (2003) · Zbl 1051.81059
[25] Blumenhagen, R.; Lüst, D.; Stieberger, S., Gauge unification in supersymmetric intersecting brane worlds, Jhep, 0307, 036, (2003)
[26] Font, A.; Ibanez, L.E.; Marchesano, F., Coisotropic D8-branes and model-building · Zbl 1298.81232
[27] Polchinski, J., Combinatorics of boundaries in string theory, Phys. rev. D, 50, 6041-6045, (1994)
[28] Beasley, C.; Witten, E., New instanton effects in string theory, Jhep, 0602, 060, (2006)
[29] Blumenhagen, R.; Cvetič, M.; Marchesano, F.; Shiu, G., Chiral D-brane models with frozen open string moduli, Jhep, 0503, 050, (2005)
[30] Blumenhagen, R.; Plauschinn, E., Intersecting D-branes on shift \(Z(2) \times Z(2)\) orientifolds, Jhep, 0608, 031, (2006)
[31] Berkooz, M.; Douglas, M.R.; Leigh, R.G., Branes intersecting at angles, Nucl. phys. B, 480, 265-278, (1996) · Zbl 0925.81211
[32] Ganor, O.J., A note on zeroes of superpotentials in F-theory, Nucl. phys. B, 499, 55-66, (1997) · Zbl 0934.81043
[33] Cvetič, M.; Papadimitriou, I., Conformal field theory couplings for intersecting D-branes on orientifolds, Phys. rev. D, 68, 046001, (2003)
[34] Cvetič, M.; Richter, R., Proton decay via dimension-six operators in intersecting D6-brane models · Zbl 1116.81356
[35] Giddings, S.B.; Maharana, A., Dynamics of warped compactifications and the shape of the warped landscape, Phys. rev. D, 73, 126003, (2006)
[36] Brunner, I.; Douglas, M.R.; Lawrence, A.E.; Romelsberger, C., D-branes on the quintic, Jhep, 0008, 015, (2000) · Zbl 0989.81100
[37] Mc Lean, R., Deformations of calibrated submanifolds, Commun. anal. geom., 6, 705, (1998)
[38] Recknagel, A.; Schomerus, V., Boundary deformation theory and moduli spaces of D-branes, Nucl. phys. B, 545, 233-282, (1999) · Zbl 0944.81029
[39] Cremades, D.; Ibanez, L.E.; Marchesano, F., Yukawa couplings in intersecting D-brane models, Jhep, 0307, 038, (2003)
[40] Douglas, M.R.; Fiol, B.; Romelsberger, C., Stability and BPS branes
[41] Affleck, I.; Dine, M.; Seiberg, N., Dynamical supersymmetry breaking in supersymmetric QCD, Nucl. phys. B, 241, 493-534, (1984)
[42] Blumenhagen, R.; Honecker, G.; Weigand, T., Non-abelian brane worlds: the open string story
[43] Douglas, M.R.; Taylor, W., The landscape of intersecting brane models
[44] Witten, E., Some properties of \(\operatorname{O}(32)\) superstrings, Phys. lett. B, 149, 351-356, (1984)
[45] Blumenhagen, R.; Honecker, G.; Weigand, T., Supersymmetric (non-)abelian bundles in the type I and \(\operatorname{SO}(32)\) heterotic string, Jhep, 0508, 009, (2005)
[46] Blumenhagen, R.; Honecker, G.; Weigand, T., Non-abelian brane worlds: the heterotic string story, Jhep, 0510, 086, (2005)
[47] Blumenhagen, R.; Honecker, G.; Weigand, T., Loop-corrected compactifications of the heterotic string with line bundles, Jhep, 0506, 020, (2005)
[48] Silverstein, E.; Witten, E., Criteria for conformal invariance of \((0, 2)\) models, Nucl. phys. B, 444, 161-190, (1995) · Zbl 0990.81666
[49] Basu, A.; Sethi, S., World-sheet stability of \((0, 2)\) linear sigma models, Phys. rev. D, 68, 025003, (2003)
[50] Beasley, C.; Witten, E., Residues and world-sheet instantons, Jhep, 0310, 065, (2003)
[51] Kachru, S.; Kallosh, R.; Linde, A.; Trivedi, S.P., De Sitter vacua in string theory, Phys. rev. D, 68, 046005, (2003) · Zbl 1244.83036
[52] Achucarro, A.; de Carlos, B.; Casas, J.A.; Doplicher, L., De Sitter vacua from uplifting D-terms in effective supergravities from realistic strings, Jhep, 0606, 014, (2006)
[53] Burgess, C.P.; Kallosh, R.; Quevedo, F., De Sitter string vacua from supersymmetric D-terms, Jhep, 0310, 056, (2003)
[54] Bergshoeff, E.; Kallosh, R.; Kashani-Poor, A.-K.; Sorokin, D.; Tomasiello, A., An index for the Dirac operator on D3 branes with background fluxes, Jhep, 0510, 102, (2005)
[55] Lüst, D.; Mayr, P.; Reffert, S.; Stieberger, S., F-theory flux, destabilization of orientifolds and soft terms on D7-branes, Nucl. phys. B, 732, 243-290, (2006) · Zbl 1192.81278
[56] Lüst, D.; Reffert, S.; Schulgin, W.; Tripathy, P.K., Fermion zero modes in the presence of fluxes and a non-perturbative superpotential
[57] Baumann, D., On D3-brane potentials in compactifications with fluxes and wrapped D-branes
[58] Cvetič, M.; Shiu, G.; Uranga, A.M., Chiral four-dimensional \(N = 1\) supersymmetric type IIA orientifolds from intersecting D6-branes, Nucl. phys. B, 615, 3-32, (2001) · Zbl 0988.81087
[59] Cvetič, M.; Shiu, G.; Uranga, A.M., Three-family supersymmetric standard like models from intersecting brane worlds, Phys. rev. lett., 87, 201801, (2001)
[60] Cremades, D.; Ibanez, L.E.; Marchesano, F., Towards a theory of quark masses, mixings and CP-violation
[61] Cvetič, M.; Li, T.; Liu, T., Supersymmetric pati – salam models from intersecting D6-branes: A road to the standard model, Nucl. phys. B, 698, 163-201, (2004) · Zbl 1123.81392
[62] Nath, P.; Perez, P.F., Proton stability in grand unified theories, in strings, and in branes
[63] Allanach, B.C.; Dedes, A.; Dreiner, H.K., The R parity violating minimal supergravity model, Phys. rev. D, 69, 115002, (2004)
[64] Cvetič, M.; Langacker, P., New grand unified models with intersecting D6-branes, neutrino masses, and flipped \(\operatorname{SU}(5)\) · Zbl 1186.81123
[65] Blumenhagen, R.; Gmeiner, F.; Honecker, G.; Lust, D.; Weigand, T., The statistics of supersymmetric D-brane models, Nucl. phys. B, 713, 83-135, (2005) · Zbl 1176.81098
[66] Gmeiner, F.; Blumenhagen, R.; Honecker, G.; Lust, D.; Weigand, T., One in a billion: MSSM-like D-brane statistics, Jhep, 0601, 004, (2006)
[67] Dijkstra, T.P.T.; Huiszoon, L.R.; Schellekens, A.N., Supersymmetric standard model spectra from RCFT orientifolds, Nucl. phys. B, 710, 3-57, (2005) · Zbl 1115.81378
[68] Anastasopoulos, P.; Dijkstra, T.P.T.; Kiritsis, E.; Schellekens, A.N., Orientifolds, hypercharge embeddings and the standard model · Zbl 1116.81069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.