×

A positive-definite scalar product for free Proca particle. (English) Zbl 1117.81045

Summary: We implement recent results of pseudo-Hermitian quantum mechanics to the description of relativistic massive particle with spin-one. We derive a one-parameter family of Lorentz invariant positive-definite scalar products on the space of solutions of the Proca equation.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] O. Klein: Z. Phys. 37 (1926) 895. V. Fock: Z. Phys. 38 (1926) 242; 39 226. W. Gordon: Z. Phys. 40 (1926) 117. P.A.M. Dirac: Proc. Roy. Soc. (London) A 117 (1928) 610. A. Proca: J. Phys. Rad. 7 (1936) 347. P.A.M. Dirac: Proc. Roy. Soc. (London) A 180 (1942) 1. W. Pauli: Rev. Mod. Phys. 15 (1943) 175. · JFM 52.0970.09
[2] E.M. Lifshitz, L.P. Pitaevskii, and V.B. Berestetskii: Quantum Electrodynamics, Oxford, 1996.
[3] M. Taketani and S. Sakata: Proc. Phys.-Math. Soc. (Japan) 22 (1940) 757. I. Tamm: Compt. Rend. Acad. Sci. (U.R.S.S.) 29 (1940) 551.
[4] L.L. Foldy: Phys. Rev. 102 (1956) 568. · Zbl 0071.23402
[5] H. Feshbach and F. Villars: Rev. Mod. Phys. 30 (1958) 24. · Zbl 0082.21905
[6] K.M. Case: Phys. Rev. 95 (1954) 1323. · Zbl 0057.20601
[7] C.M. Bender and B. Boettcher: Phys. Rev. Lett. 80 (1998) 4243. · Zbl 0947.81018
[8] N. Hatano and D.R. Nelson: Phys. Rev. Lett. 77 (1996) 570; Phys. Rev. B 56 (1997) 8651. C.M. Bender and K.A. Milton: Phys. Rev. D 55 (1997) R3255. C.M. Bender, S. Boettcher, and P.N. Meisinger: J. Math. Phys. 40 (1999) 2201. C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. Lett. 89 (2002) 0270401. G. Scolarici and L. Solombrino: J. Math. Phys. 44 (2003) 4450. C.M. Bender and H.F. Jones: Phys. Lett. A 328 (2004) 102. C.M. Bender: Czech. J. Phys. 54 (2004) 1027. H.F. Jones: Czech. J. Phys. 54 (2004) 1107. A. Mostafazadeh: Czech. J. Phys. 54 (2004) 1125.
[9] E. Caliceti, S. Graffi, and M. Maioli: Commun. Math. Phys. 75 (1980) 51. E. Caliceti and S. Gra.: J. Phys. A 37 (2004) 2239. F.M. Fernández, R. Guardiola, J. Ros, and M. Znojil: J. Phys. A: Math. Gen. 31 (1998) 10105. H. Bíla: Czech. J. Phys. 54 (2004) 1049. · Zbl 0446.47044
[10] F.G. Scholtz, H.B. Geyer, and F.J.W. Hahne: Ann. Phys. (NY) 213 (1992) 74. · Zbl 0749.47041
[11] V. Buslaev and V. Grecchi: J. Phys. A: Math. Gen. 26 (1993) 5541. G. Alvarez: J. Phys. A: Math. Gen. 27 (1995) 4589. · Zbl 0817.47077
[12] P. Dorey, C. Dunning, and R. Tateo: J. Phys. A: Math. Gen. 34 (2001) 5679. K.C. Shin: J. Math. Phys. 42 (2001) 2513. · Zbl 0982.81021
[13] M. Znojil: Phys. Lett. A 259 (1995) 220. · Zbl 0948.81535
[14] A.A. Andrianov, F. Cannata, J.-P. Dedonder, and M.V. Ioffe: Int. J. Mod. Phys. A 14 (1999) 2675. G. Lévai and M. Znojil: J. Phys. A: Math. Gen. 33 (2000) 7165. M. Znojil: LANL arXiv math-ph/0104012, 2001; reprinted Rendiconti del Circ. Mat. di Palermo, Ser. II, Suppl. 72, 2004, p. 211. B. Bagchi, C. Quesne, and M. Znojil: Mod. Phys. Lett. A 16 (2001) 2047. B. Bagchi, C. Quesne, and R. Roychoudhury: J. Phys. A 38 (2005) L647. · Zbl 1041.81051
[15] W.D. Heiss and H.L. Harney: Eur. Phys. J. D 17 (2001) 149. W.D. Heiss: Czech. J. Phys. 55 (2005) 1107. U. Gunther and F. Stefani: Czech. J. Phys. 55 (2005) 1099.
[16] H. Langer and C. Tretter: Czech. J. Phys. 54 (2004) 1113. · Zbl 1162.81375
[17] M. Znojil: Phys. Lett. A 285 (2001) 7. V. Jakubský and M. Znojil: Czech. J. Phys. 54 (2004) 1101. · Zbl 0969.81521
[18] A. Ramirez and B. Mielnik: Rev. Mex. Fis. 49S2 (2003) 130.
[19] S. Albeverio, S.-M. Fei, and P. Kurasov: Lett. Math. Phys. 59 (2002) 227. M. Znojil and V. Jakubský: J. Phys. A: Math. Gen. 38 (2005) 5041. V. Jakubský and M. Znojil; J. Phys. 55 (2005) 1113. S.-M. Fei: Czech. J. Phys. 55 (2005) 1085. · Zbl 1053.81026
[20] A. Mostafazadeh: J. Math. Phys. 43 (2002) 205; 2814; 3944; 6343. · Zbl 1059.81070
[21] B. Bagchi, S. Mallik, and C. Quesne: Mod. Phys. Lett. A 17 (2002) 1651. A. Mostafazadeh: LANL arXiv quant-ph/0310164, 2003. F. Kleefeld: AIP Conf. Proc. 660 (2003) 325. M. Znojil: arXiv:hep-th/0408081, 2004. F. Kleefeld: arXiv:hep-th/0408028, 2004. · Zbl 1083.81522
[22] A. Mostafazadeh and A. Batal: J. Phys. A: Math. Gen. 37 (2004) 11645.
[23] G.S. Japaridze: J.Phys. A: Math. Gen. 35 (2002) 1709. H.B. Geyer, F.G. Scholtz, and I. Snyman: Czech. J. Phys. 54 (2004) 1069. H.B. Geyer and I. Snyman: Czech. J. Phys. 55 (2005) 1091. W.D. Heiss: Czech. J. Phys. 55 (2005) 1107. R. Kretschmer and L. Szymanowski: Phys. Lett. A 325 (2004) 112. · Zbl 1010.81019
[24] F.G. Scholz and H.B. Geyer: Phys. Lett. B, in print.
[25] A. Mostafazadeh: J. Phys. A: Math. Gen. 38 (2005) 6557. · Zbl 1072.81020
[26] A. Mostafazadeh: Class. Quant. Grav. 20 (2003) 155; arXiv quant-ph/0307059. A. Mostafazadeh and F. Zamani: arXiv quant-ph/0312078, 2003. A. Mostafazadeh: Ann. Phys. (NY) 309 (2004) 1; Czech. J. Phys. 54 (2004) 93; J. Math. Phys. 44 (2003) 974. · Zbl 1039.83005
[27] M. Znojil: Czech. J. Phys. 54 (2004) 151; 55 (2005) 1187.
[28] M. Znojil: J. Phys. A: Math. Gen. 39 (2006) 441. · Zbl 1091.81029
[29] E.P. Wigner: Ann. Math. 40 (1939) 149. · Zbl 0020.29601
[30] W.I. Fushchich and A.G. Nikitin: Symmetries of Equations of Quantum Mechanics, Allerton Press, New York, 1994.
[31] Ch. Fronsdal: Phys. Rev. 113 (1958) 1367. D.I.Weaver, C.L. Hammer, and R.H. Good, Jr.: Phys. Rev. B 135 (1964) 241.
[32] P.M. Mathews: Phys. Rev. 143 (1966) 985. · Zbl 0139.23201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.