zbMATH — the first resource for mathematics

Two-dimensional critical percolation: the full scaling limit. (English) Zbl 1117.60086
The authors study the Bernoulli site percolation model on the two-dimensional triangular lattice at the threshold \(p_c=1/2\). They consider the set of all interfaces between occupied and non-occupied sites. It is shown that the scaling limit of this set (in the sense of M. Aizenman and A. Burchard [Duke Math. J. 99, No. 3, 419–453 (1999; Zbl 0944.60022)]) is a process of continuum non-simple loops in the plane which is constructed by the authors using chordal SLE\(_6\) paths. It is further proved that this process is conformally invariant and it consists of countably many non-crossing continuous loops that touch each other many times. Moreover, any deterministic point in the plane is surrounded by an infinite family of nested loops with diameters going both to zero and infinity. The proofs are based on the fact that the percolation exploration path converges in distribution to the trace of chordal SLE\(_6\).

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
Full Text: DOI arXiv
[1] Aizenman, M.: The geometry of critical percolation and conformal invariance. In: Bai-lin, H. (ed.) STATPHYS 19, Proceeding Xiamen 1995, Singapore: World Scientific, 1995
[2] Aizenman M., (1998) Scaling limit for the incipient spanning clusters. In: Golden K., Grimmett G., James R., Milton G., Sen P. (eds) Mathematics of Multiscale Materials; the IMA Volumes in Mathematics and its Applications. Berlin-Heidelberg New York, Springer
[3] Aizenman M., Burchard A. (1999) Hölder regularity and dimension bounds for random curves. Duke Math. J. 99, 419–453 · Zbl 0944.60022
[4] Aizenman M., Burchard A., Newman C.M., Wilson D.B. (1999) Scaling limits for minimal and random spanning trees in two dimensions. Ran. Structures Alg. 15, 316–367 · Zbl 0939.60031
[5] Aizenman M., Duplantier B., Aharony A. (1999) Connectivity exponents and the external perimeter in 2D independent percolation. Phys. Rev. Lett. 83, 1359–1362
[6] Belavin A.A., Polyakov A.M., Zamolodchikov A.B. (1984) Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34, 763–774 · Zbl 0661.17013
[7] Belavin A.A., Polyakov A.M., Zamolodchikov A.B. (1984) Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 · Zbl 0661.17013
[8] Benjamini I., Schramm O.(1998) Conformal invariance of Voronoi percolation. Commun. Math. Phys. 197, 75–107 · Zbl 0921.60081
[9] Billingsley, P.: Weak Convergence of Measures: Applications in Probability. Section 3, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1971 · Zbl 0271.60009
[10] Camia F., Newman C.M. (2004) Continuum Nonsimple Loops and 2D Critical Percolation. J. Stat. Phys. 116, 157–173 · Zbl 1142.82332
[11] Camia, F., Newman, C.M.: The Full Scaling Limit of Two-Dimensional Critical Percolation (original preprint version of this paper and reference [cn2]), available at http://arxiv:org/list/math.PR/0504036, 2005
[12] Camia, F., Newman, C.M.: Critical Percolation Exploration Path and SLE 6: a Proof of Convergence. available at http://arxiv:org/list/math.PR/0604487, 2006 · Zbl 1126.82007
[13] Cardy J.L. (1992) Critical percolation in finite geometries. J. Phys. A 25, L201–L206 · Zbl 0965.82501
[14] Cardy, J.: Lectures on Conformal Invariance and Percolation, available at http://arxiv:org/list/math-ph/0103018, 2001 · Zbl 0994.82038
[15] Durrett R., (2004) Probability: Theory and Examples Third Edition. Belmont CA, Duxbury Advanced Series
[16] Grimmett G.R., (1999) Percolation Second Edition. Berlin, Springer · Zbl 0926.60004
[17] Kager W., Nienhuis B. (2004) A Guide to Stochastic Löwner Evolution and Its Applications. J. Phys. A 115, 1149–1229 · Zbl 1157.82327
[18] Kenyon R. (2000) Long-range properties of spanning trees. J. Math. Phys. 41, 1338–1363 · Zbl 0977.82011
[19] Kenyon R. (2000) Conformal invariance of domino tiling. Ann. Probab. 28, 759–795 · Zbl 1043.52014
[20] Kesten H., (1982) Percolation Theory for Mathematicians. Boston, Birkhäuser · Zbl 0522.60097
[21] Kesten, H., Sidoravicius, V., Zhang, Y.: Almost all words are seen in critical site percolation on the triangular lattice. Electr. J. Probab. 3(10) (1998) · Zbl 0908.60082
[22] Langlands R., Pouliot P., Saint-Aubin Y. (1994) Conformal invariance for two-dimensional percolation. Bull. Am. Math. Soc. 30, 1–61 · Zbl 0794.60109
[23] Lawler, G.: Conformally Invariant Processes in the Plane. In: Lecture notes for the 2002 ICTP School and Conference on Probability, ICTP Lecture Notes Series, Vol. XVII, available at http://users:ictp.it/\(\sim\)pub_off/lectures/vol17.html, 2004
[24] Lawler, G.F.: Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, 114, Providence, RI: American Mathematical Society, 2005 · Zbl 1074.60002
[25] Lawler G., Schramm O., Werner W. (2001) Values of Brownian intersection exponents I: Half-plane exponents. Acta Math. 187, 237–273 · Zbl 1005.60097
[26] Lawler, G., Schramm, O., Werner, W.: One arm exponent for critical 2D percolation. Electronic J. Probab. 7(2) (2002) · Zbl 1015.60091
[27] Polyakov A.M. (1970) Conformal symmetry of critical fluctuations. JETP Letters 12, 381–383
[28] Pommerenke Ch., (1992) Boundary Behaviour of Conformal Maps. Berlin, Springer-Verlag · Zbl 0762.30001
[29] Radó T. (1923) Sur la représentation conforme de domaines variables. Acta Sci. Math. (Szeged) 1, 180–186 · JFM 49.0247.03
[30] Rohde S., Schramm O. (2005) Basic properties of SLE. Ann. Math. 161, 883–924 · Zbl 1081.60069
[31] Russo L. (1978) A note on percolation. Z. Wahrsch. Ver. Geb. 43, 39–48 · Zbl 0363.60120
[32] Schramm O. (2000) Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 · Zbl 0968.60093
[33] Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Available at http://arxiv.org/list/math.PR/0605337, 2006 · Zbl 1210.60051
[34] Seymour P.D., Welsh D.J.A. (1978), Percolation probabilities on the square lattice. In: Bollobás B. (ed) Advances in Graph Theory Annals of Discrete Mathematics 3. Amsterdam, North-Holland, pp. 227–245 · Zbl 0405.60015
[35] Sheffield, S., Werner, W.: In preparation
[36] Smirnov S. (2001) Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris 333, 239–244 · Zbl 0985.60090
[37] Smirnov, S.: Critical percolation in the plane. I. Conformal invariance and Cardy’s formula. II. Continuum scaling limit. (long version of [36], dated Nov. 15, 2001), available at http://www.math. kth.se/\(\sim\)stas/papers/index.html
[38] Smirnov, S.: In preparation
[39] Smirnov, S.: Private communication
[40] Smirnov S., Werner W. (2001) Critical exponents for two-dimensional percolation. Math. Rev. Lett. 8, 729–744 · Zbl 1009.60087
[41] Tsirelson, B.: Percolation, boundary, noise: an experiment, available at http://arxiv.org/list/math.PR/ 0506269, 2005
[42] Werner W. (2003) SLEs as boundaries of clusters of Brownian loops, C. R. Math. Acad. Sci. Paris 337, 481–486 · Zbl 1029.60085
[43] Werner, W.: Random planar curves and Schramm-Loewner Evolutions. In: Lectures on probability theory and statistics, Lecture Notes in Math., Vol. 1840, Berlin: Springer, 2004, pp. 107–195 · Zbl 1057.60078
[44] Werner, W.: Some recent aspects of random conformally invariant systems. Lecture notes available at http://arxiv.org/list/math.PR/0511268, 2005
[45] Werner, W.: The conformally invariant measure on self-avoiding loops. Available at http://arxiv.org/ list/math.PR/0511605, 2005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.