×

zbMATH — the first resource for mathematics

Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces. (English) Zbl 1117.60056
The authors consider Banach valued processes, which are a sum of a bounded variation process, of a jump process, and of a martingale, which is given by a stochastic integral of time dependent random function with respect to a compensated Poisson random measure. They establish an Itô formula for such processes, on which also Banach valued functions act.

MSC:
60H05 Stochastic integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albeverio, S., Mandrekar, V. and Rüdiger, B., Existence of weak solutions for SDEs and semilinear equations with non Gaussian noise, in preparation. · Zbl 1168.60014
[2] Albeverio S., Stochastic Analysis and Applications 23 (2005)
[3] DOI: 10.1016/S0022-1236(03)00146-0 · Zbl 1033.60073 · doi:10.1016/S0022-1236(03)00146-0
[4] Albeverio S., Lévy Processes: Theory and Applications pp 187– (2001) · doi:10.1007/978-1-4612-0197-7_9
[5] DOI: 10.1016/S0304-4149(97)00112-9 · Zbl 0934.60055 · doi:10.1016/S0304-4149(97)00112-9
[6] DOI: 10.1017/CBO9780511755323 · Zbl 1073.60002 · doi:10.1017/CBO9780511755323
[7] DOI: 10.1515/rose.2000.8.3.245 · Zbl 0972.60048 · doi:10.1515/rose.2000.8.3.245
[8] Araujo, A. and Giné, E. 1980. ”The central limit theorem for real and Banach valued random variables”. Wiley series in probability and mathematical statistics. New York, Chichester, Brisbane, Toronto
[9] Bensoussan, A. and Lions, J.L. 1982. ”Contróle impulsionnel et inéquations quasi variationnelles (French) [Impulse control and quasivariational inequalities] Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]”. Vol. 11, Paris: Gauthier-Villars.
[10] Dettweiler E., Probability in Banach spaces IV, Proceeding of Oberwolfach 1982 pp 54– (1982)
[11] Dinculeanu N., Rendiconti Accademia Naz, Science Memorie di Matre Applications 22 pp 85– (1998)
[12] Dinculeanu N., Rendiconti Accademia Naz, Science Memorie di Matre Applications 22 pp 129– (1998)
[13] Dinculeanu N., Rendiconti Accademia Naz, Science Memorie di Matre Applications 23 pp 1– (1999)
[14] Dynkin E.B., Die Grundlagen der Theorie der Markoffschen Prozesse (1982)
[15] Gihman I.I., The Theory of Stochastic Processes II (1975) · Zbl 0305.60027 · doi:10.1007/978-3-642-61921-2
[16] Graveraux B., Annales de l’Institut Henri Poincaré 10 pp 339– (1974)
[17] Hausenblas E., Random Optical and Stochastics Equation 14 pp 45– (2006) · Zbl 1118.60050 · doi:10.1163/156939706776138011
[18] Hausenblas E., Electronic Journal of Probability 10 pp 1496– (2005) · Zbl 1109.60048 · doi:10.1214/EJP.v10-297
[19] Ikeda N., Stochastic Differential Equations and Diffusion Processes (second edition), North-Holland Mathematical Library 24 (1989) · Zbl 0684.60040
[20] Itô K., Japanese Journal of Mathematics 18 pp 261– (1942)
[21] Jurek Z.J., Operator-Limit Distributions in Probability Theory (1993) · Zbl 0850.60003
[22] Knoche C., Comptes Rendus Mathematiques des l’ Academie des Sciences Paris 339 pp 647– (2004) · Zbl 1058.60050 · doi:10.1016/j.crma.2004.09.004
[23] Kolmogorov, A.N. and Fomin, S.V., 1980, Elementi di teoria delle funzioni e di analisi funzionale. Edizione MIR, Moscau, Translation from the russian: Elementy teorii funktsij i funktisianal’nogo Copyright by NAUKA, Moscau.
[24] Kwapién S., Studia Mathematica 44 pp 583– (1972)
[25] Kwapień S., Probability and its Applications (1992)
[26] Linde W., Infinitely Divisible and Stable Measures on Banach Spaces (1983) · Zbl 0526.28011
[27] Métivier M., Semimartingales, A Course on Stochastic Processes. De Gruyter Studies in Mathematics 2 (1982) · Zbl 0503.60054 · doi:10.1515/9783110845563
[28] Mandrekar V., Stochastics and Stochastic Reports 78 pp 189– (2006) · Zbl 1119.60040 · doi:10.1080/17442500600813140
[29] Mandrekar V., Stochastic Partial Differential Equations and Applications–VII (2005)
[30] Mandrekar, V. and Rüdiger, B., Relation between stochastic integrals and the geometry of Banach spaces, in preparation. · Zbl 1187.60043
[31] Mandrekar V., Progress in Probability (2006)
[32] Marcus M.B., Electronic Communications in Probability 6 pp 15– (2001) · Zbl 0976.60027 · doi:10.1214/ECP.v6-1031
[33] Metivier M., Probability and Mathematical Statistics: A Series of Monographs and Textbooks (1980)
[34] DOI: 10.1007/BFb0101756 · doi:10.1007/BFb0101756
[35] Pisier G., Probability and Analysis, Varenna (Como) (1985) · Zbl 0586.47017
[36] DOI: 10.1007/BF02760337 · Zbl 0344.46030 · doi:10.1007/BF02760337
[37] DOI: 10.1007/BFb0084127 · doi:10.1007/BFb0084127
[38] Protter P., Stochastic Integration and Differential Equations, A New Approach. 21 (1995) · Zbl 0694.60047
[39] Privault N., Annales Mathematiques Blaise Pascal 6 pp 41– (1999) · Zbl 1158.60351 · doi:10.5802/ambp.120
[40] Rosinski J., Dissertationes Mathematicae 259 pp 71– (1987)
[41] Rosinski J., Studia Mathematica pp 15– (1984)
[42] Rosinski J., Bulletin of Polish Academy of Sciences-Mathematics 32 pp 363– (1984)
[43] DOI: 10.1080/10451120410001704081 · Zbl 1052.60045 · doi:10.1080/10451120410001704081
[44] Skorohod A.V., Studies in the Theory of Random Processes (1965)
[45] DOI: 10.1214/aop/1176993234 · Zbl 0554.60072 · doi:10.1214/aop/1176993234
[46] Üstünel A.S., Annales de l’Institut Henri Poincaré pp 165– (1982)
[47] Walsh J.B., École dÉté de Probabilités de Saint-Flour XIV-1984 pp 266– (1986)
[48] Woyczynski W.A., Advances in Probability LNM 472 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.