×

zbMATH — the first resource for mathematics

On fuzzy contractive mappings in fuzzy metric spaces. (English) Zbl 1117.54008
Fixed point theorems for fuzzy contractive mappings due to V. Gregori and A. Sapena [ibid. 125, No. 2, 245–252 (2002; Zbl 0995.54046)] are extended to Edelstein fuzzy contractive mappings. Convergence properties for fuzzy contractive mappings are studied in fuzzy metric spaces in the sense of A. George and P. Veeramani [ibid. 64, No. 3, 395–399 (1994; Zbl 0843.54014)] and I. Kramosil and J. Michalek [Kybernetika, Praha 11, 336–344 (1975; Zbl 0319.54002)].

MSC:
54A40 Fuzzy topology
54E35 Metric spaces, metrizability
54A05 Topological spaces and generalizations (closure spaces, etc.)
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chang, S.S.; Cho, Y.J.; Kang, S.M., Probabilistic metric spaces and nonlinear operator theory, (1994), Sichuan University Press Chengdu
[2] Constantin, Gh.; Istrăţescu, I., Elements of probabilistic analysis with applications, ()
[3] Egbert, R.J., Products and quotients of probabilistic metric spaces, Pacific J. math., 24, 3, 437-455, (1968) · Zbl 0175.46601
[4] Fang, J.-X., On fixed point theorems in fuzzy metric spaces, Fuzzy sets and systems, 46, 107-113, (1992) · Zbl 0766.54045
[5] George, A.; Veeramani, P., On some results in fuzzy metric spaces, Fuzzy sets and systems, 64, 395-399, (1994) · Zbl 0843.54014
[6] George, A.; Veeramani, P., On some results of analysis for fuzzy metric spaces, Fuzzy sets and systems, 90, 365-368, (1997) · Zbl 0917.54010
[7] Grabiec, M., Fixed points in fuzzy metric spaces, Fuzzy sets and systems, 27, 385-389, (1988) · Zbl 0664.54032
[8] Gregori, V.; Romaguera, S., Some properties of fuzzy metric spaces, Fuzzy sets and systems, 115, 485-489, (2000) · Zbl 0985.54007
[9] Gregori, V.; Romaguera, S., Characterizing completable fuzzy metric spaces, Fuzzy sets and systems, 144, 3, 411-420, (2004) · Zbl 1057.54010
[10] Gregori, V.; Sapena, A., On fixed point theorems in fuzzy metric spaces, Fuzzy sets and systems, 125, 245-253, (2002) · Zbl 0995.54046
[11] Hadžić, O.; Pap, E., Fixed point theory in probabilistic metric spaces, (2001), Kluwer Academic Publishers Dordrecht
[12] Höhle, U., Probabilistische metriken auf der menge der nichtnegativen verteilungsfunctionen, Aequationes math., 18, 345-356, (1978) · Zbl 0412.60020
[13] Istrăţescu, I., On some fixed points theorems in generalized Menger spaces, Boll. un. mat. ital. V. ser. A, 13, 95-100, (1976)
[14] Kramosil, O.; Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetika, 11, 336-344, (1975) · Zbl 0319.54002
[15] Miheţ, D., A Banach contraction theorem in fuzzy metric spaces, Fuzzy sets and systems, 144, 3, 431-439, (2004) · Zbl 1052.54010
[16] V. Radu, Equicontinuous iterates of t-norms and applications to random normed and fuzzy Menger spaces, in: J. Sousa Ramos, D. Gronau, C. Mira, L. Reich, A.N. Sharkowski (Eds.), Iteration Theory (ECIT 02), Grazer Math. Ber. 33 (2004) 323-350. · Zbl 1058.54021
[17] Radu, V., Some suitable metrics on fuzzy metric spaces, Fixed point theory, 5, 2, 323-347, (2004) · Zbl 1071.54016
[18] A. Razani, A contraction theorem in fuzzy metric spaces, Fixed Point Theory Appl. (3) (2005) 257-265. · Zbl 1102.54005
[19] B. Schweizer, A. Sklar, Probabilistic metric spaces, in: North Holland Series in Probability and Applied Mathematics, New York, Amsterdam, Oxford, 1983 and the new edition in Dover Books on Mathematics, Dover, New York, 2005.
[20] Sehgal, V.M.; Bharucha-Reid, A.T., Fixed points of contraction mappings on probabilistic metric spaces, Math. systems theory, 6, 97-104, (1972) · Zbl 0244.60004
[21] Tan, N.X., Generalized probabilistic metric spaces and fixed point theorems, Math. nachr., 129, 205-218, (1986) · Zbl 0603.54049
[22] Vasuki, R.; Veeramani, P., Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy sets and systems, 135, 3, 409-413, (2003) · Zbl 1029.54012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.