×

Left-symmetric algebras from linear functions. (English) Zbl 1117.17001

Summary: Some left-symmetric algebras are constructed from linear functions. They include a kind of simple left-symmetric algebras and some examples appearing in mathematical physics. Their complete classification is also given, which shows that they can be regarded as generalization of certain two-dimensional left-symmetric algebras.

MSC:

17A30 Nonassociative algebras satisfying other identities
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bai, C. M.; Meng, D. J., The classification of left-symmetric algebra in dimension 2, Chinese Sci. Bull., 23, 2207 (1996), (in Chinese)
[2] Bai, C. M.; Meng, D. J., The structure of bi-symmetric algebras and their sub-adjacent Lie algebras, Comm. Algebra, 28, 2717-2734 (2000) · Zbl 0966.17001
[3] Bai, C. M.; Meng, D. J., On the realization of transitive Novikov algebras, J. Phys. A, 34, 3363-3372 (2001) · Zbl 0985.17001
[4] Bai, C. M.; Meng, D. J., The realizations of non-transitive Novikov algebras, J. Phys. A, 34, 6435-6442 (2001) · Zbl 1003.17002
[5] Bai, C. M.; Meng, D. J., A Lie algebraic approach to Novikov algebras, J. Geom. Phys., 45, 218-230 (2003) · Zbl 1033.17001
[6] Balinskii, A. A.; Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Soviet Math. Dokl., 32, 228-231 (1985) · Zbl 0606.58018
[7] Burde, D., Affine structures on nilmanifolds, Internat. J. Math., 7, 599-616 (1996) · Zbl 0868.57034
[8] Burde, D., Simple left-symmetric algebras with solvable Lie algebra, Manuscipta Math., 95, 397-411 (1998) · Zbl 0907.17008
[9] Etingof, P.; Soloviev, A., Quantization of geometric classical \(r\)-matrix, Math. Res. Lett., 6, 223-228 (1999) · Zbl 0999.17025
[10] Etingof, P.; Schedler, T.; Soloviev, A., Set-theoretical solutions to the quantum Yang-Baxter equations, Duke Math. J., 100, 169-209 (1999) · Zbl 0969.81030
[11] Gel’fand, I. M.; Dorfman, I. Ya., Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl., 13, 248-262 (1979) · Zbl 0437.58009
[12] Golubschik, I. Z.; Sokolov, V. V., Generalized operator Yang-Baxter equations, integrable ODES and nonassociative algebras, J. Nonlinear Math. Phys., 7, 184-197 (2000) · Zbl 1119.37318
[13] Kim, H., Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geom., 24, 373-394 (1986) · Zbl 0591.53045
[14] Kleinfeld, E., Assosymmetric rings, Proc. Amer. Math. Soc., 8, 983-986 (1957) · Zbl 0082.02903
[15] Kuperschmidt, B. A., Non-abelian phase spaces, J. Phys. A, 27, 2801-2810 (1994)
[16] Kuperschmidt, B. A., Quantum differential forms, J. Nonlinear Math. Phys., 5, 245-288 (1998) · Zbl 0967.58006
[17] Kuperschmidt, B. A., On the nature of the Virasoro algebra, J. Nonlinear Math. Phys., 6, 222-245 (1999) · Zbl 1015.17027
[18] Kuperschmidt, B. A., What a classical \(r\)-matrix really is, J. Nonlinear Math. Phys., 6, 448-488 (1999) · Zbl 1015.17015
[19] Medina, A., Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geom., 16, 445-474 (1981) · Zbl 0486.53026
[20] Svinolupov, S. I., On the analogues of the Burgers equation, Phys. Lett. A, 135, 32-36 (1989)
[21] Svinolupov, S. I.; Sokolov, V. V., Vector-matrix generalizations of classical integrable equations, Theoret. Math. Phys., 100, 959-962 (1994) · Zbl 0875.35121
[22] Vinberg, E. B., Convex homogeneous cones, Trans. Moscow Math. Soc., 12, 340-403 (1963) · Zbl 0138.43301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.