# zbMATH — the first resource for mathematics

Adding truth-constants to logics of continuous t-norms: axiomatization and completeness results. (English) Zbl 1117.03030
Summary: We study generic expansions of logics of continuous t-norms with truth-constants, taking advantage of previous results for $${\L}$$ukasiewicz logic and more recent results for Gödel logic and product logic. Indeed, we consider algebraic semantics for expansions of logics of continuous t-norms with a set of truth-constants $$\{\bar r\mid r \in C\}$$, for a suitable countable $$C\subseteq [0,1]$$, and provide a full description of completeness results when (i) the t-norm is a finite ordinal sum of Łukasiewicz, Gödel and product components, (ii) the set of truth-constants covers all the unit interval in the sense that each component of the t-norm contains at least one value of $$C$$ different from the bounds of the component, and (iii) the truth-constants in Łukasiewicz components behave like rational numbers.

##### MSC:
 03B52 Fuzzy logic; logic of vagueness
Full Text:
##### References:
 [1] Aglianó, P.; Montagna, F., Varieties of BL-algebras I: general properties, J. pure appl. algebra, 181, 105-129, (2003) · Zbl 1034.06009 [2] Blok, W.J.; Pigozzi, D., Algebraizable logics, Mem. amer. math. soc., 77, 396, (1989) · Zbl 0664.03042 [3] Burris, S.; Sankappanavar, H.P., A course in universal algebra, graduate texts in mathematics, (1981), Springer New York · Zbl 0478.08001 [4] Cignoli, R.; Esteva, F.; Godo, L.; Torrens, A., Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft comput., 4, 106-112, (2000) [5] Cignoli, R.; Mundici, D., Partial isomorphisms on totally ordered abelian groups and Hájek’s completeness theorem for basic logic, Mult. valued logic, special issue dedicated to the memory of grigore moisil, 6, 89-94, (2001) · Zbl 1020.03019 [6] Cignoli, R.; Torrens, A., An algebraic analysis of product logic, Mult. valued logic, 5, 45-65, (2000) · Zbl 0962.03059 [7] P. Cintula, From fuzzy logic to fuzzy mathematics, Ph.D. Dissertation, Czech Technical University, Prague, Czech Republic, 2005. · Zbl 1086.06008 [8] Cintula, P., Short note: on the redundancy of axiom (A3) in BL and MTL, Soft comput.—A fusion found. methodol. appl., 9, 12, 942, (2005) · Zbl 1093.03011 [9] Czelakowski, J.; Dziobiak, W., Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class, Algebra universalis, 27, 128-149, (1990) · Zbl 0695.08016 [10] Di Nola, A., MV-algebras in the treatment of uncertainty, (), 123-131 [11] Dummett, M., A propositional calculus with denumerable matrix, J. symbolic logic, 24, 97-106, (1959) · Zbl 0089.24307 [12] Esteva, F.; Godo, L.; Hájek, P.; Navara, M., Residuated fuzzy logic with an involutive negation, Arch. math. logic, 39, 103-124, (2000) · Zbl 0965.03035 [13] Esteva, F.; Godo, L.; Montagna, F., Equational characterization of the subvarieties of BL generated by t-norm algebras, Studia logica, 76, 161-200, (2004) · Zbl 1045.03048 [14] Esteva, F.; Godo, L.; Noguera, C., On rational weak nilpotent minimum logics, J. mult.-valued logic soft comput., 12, 1-2, 9-32, (2006) · Zbl 1144.03020 [15] I.M.A. Ferrerim, On varieties and quasivarieties of hoops and their reducts, Ph.D. Dissertation, University of Illinois at Chicago, 1992. [16] Gaitán, H., The number of simple one-generated bounded commutative BCK-chains, Math. jpn, 38, 3, 483-486, (1993) · Zbl 0777.06015 [17] Gottwald, S., A treatise on many-valued logics, studies in logic and computation, vol. 9, (2000), Research Studies Press Baldock [18] Hájek, P., Metamathematics of fuzzy logic, trends in logic, vol. 4, (1998), Kluwer Academic Publishers Dordrecht · Zbl 0937.03030 [19] Hájek, P.; Godo, L.; Esteva, F., A complete many-valued logic with product-conjunction, Arch. math. logic, 35, 191-208, (1996) · Zbl 0848.03005 [20] Hay, L., Axiomatization of the infinite-valued predicate calculus, J. symbolic logic, 28, 77-86, (1963) · Zbl 0127.00703 [21] Horčík, R.; Cintula, P., Product łukasiewicz logic, Arch. math. logic, 43, 477-503, (2004) · Zbl 1059.03011 [22] Ling, C.M., Representation of associative functions, Publ. math. debrecen, 12, 189-212, (1965) · Zbl 0137.26401 [23] F. Montagna, C. Noguera, R. Horčík, On weakly cancellative fuzzy logics, J. Logic Comput. 16 (4) (2006) 423-450. · Zbl 1113.03021 [24] Mostert, P.S.; Shields, A.L., On the structure of semigroups on a compact manifold with boundary, Ann. math., 65, 117-143, (1957) · Zbl 0096.01203 [25] Novák, V., On the syntactico-semantical completeness of first-order fuzzy logic, part I, syntax and semantics, Kybernetika, 26, 47-66, (1990) · Zbl 0705.03009 [26] Novák, V., On the syntactico-semantical completeness of first-order fuzzy logic, part II, main results, Kybernetika, 26, 134-154, (1990) · Zbl 0705.03010 [27] Novák, V.; Perfilieva, I.; Močkoř, J., Mathematical principles of fuzzy logic, (1999), Kluwer Academic Publishers Dordrecht · Zbl 0940.03028 [28] Pavelka, J., On fuzzy logic I, II, III, Z. math. logik grundl. math., 25, 45-52, (1979), 119-134, 447-464 · Zbl 0435.03020 [29] Savický, P.; Cignoli, R.; Esteva, F.; Godo, L.; Noguera, C., On product logic with truth-constants, J. logic comput., 16, 205-225, (2006) · Zbl 1102.03030 [30] Vojtáš, P., Fuzzy logic programming, Fuzzy sets and systems, 124, 361-370, (2001) · Zbl 1015.68036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.