×

zbMATH — the first resource for mathematics

General solutions of relativistic wave equations. II: Arbitrary spin chains. (English) Zbl 1116.83003
Summary: A construction of relativistic wave equations on the homogeneous spaces of the Poincaré group is given for arbitrary spin chains. Parametrizations of the field functions and harmonic analysis on the homogeneous spaces are studied. It is shown that a direct product of Minkowski space time and two-dimensional complex sphere is the most suitable homogeneous space for the physical applications. The Lagrangian formalism and field equations on the Poincaré and Lorentz groups are considered. A boundary value problem for the relativistically invariant system is defined. General solutions of this problem are expressed via an expansion in hyperspherical functions defined on the complex two-sphere.
[For part I see V. V. Varlamov, Int. J. Theor. Phys. 42, No. 3, 583–633 (2003; Zbl 1027.83003)]

MSC:
83A05 Special relativity
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics (Nauka, Moscow) [in Russian].
[2] Bacry, H. and Kihlberg, A. (1969). Wavefunctions on homogeneous spaces. Journal of Mathematical Physics 10, 2132–2141. · Zbl 0191.27002 · doi:10.1063/1.1664813
[3] Bacry, H. and Nuyts, J. (1967). Mass-spin relation in a Lagrangian model. Physical Review 157, 1471–1472. · doi:10.1103/PhysRev.157.1471
[4] Bagrov, V. G. and Gitman, D. M. (1989). Exact Solutions of Relativistic Wave Equations, Academic Publishers, Dortrecht-Boston-London. · Zbl 0723.35066
[5] Bargmann, V. and Wigner, E. P. (1948). Group theoretical discussion of relativistic wave equations. Proceedings of the National Academy of Sciences of the USA 34, 211–223. · Zbl 0030.42306 · doi:10.1073/pnas.34.5.211
[6] Beers, B. L. and Dragt, A. J. (1970). New theorems about spherical harmonic expansions and SU(2). Journal of Mathematical Physics 11, 2313–2328. · Zbl 0198.47701 · doi:10.1063/1.1665399
[7] Bialynicki-Birula, I. (1996). Photon wave function. Progress in Optics Vol. XXXVI, Ed. E. Wolf (Elsevier, Amsterdam).
[8] Biedenharn, L. C., Braden, H. W., Truini, P., and van Dam, H. (1988). Relativistic wavefunctions on spinor spaces. Journal Physics A: Mathematics of General 21, 3593–3610. · Zbl 0682.53087 · doi:10.1088/0305-4470/21/18/014
[9] Bhabha, H. J. (1945). Relativistic wave equations for the elementary particles. Review of Modern Physics 17, 200–216. · Zbl 0063.00362 · doi:10.1103/RevModPhys.17.200
[10] de Broglie, L. (1943). Theorie de particules a spin (methode de fusion), Gauthier-Villars, Paris. · Zbl 0060.01707
[11] Courant, R. and Hilbert, D. (1931). Methoden der mathematischen Physik, Springer, Berlin. · Zbl 0001.00501
[12] Finkelstein, D. (1955). Internal structure of spinning particles. Physical Review 100, 924–931. · Zbl 0065.44305 · doi:10.1103/PhysRev.100.924
[13] Gel’fand, I. M. and Yaglom, A. M. (1948). General relativistic–invariant equations and infinite–dimensional representations of the Lorentz group. Zhurnal Experimentalnoic Teoreticheskoi Fiziki 18, 703–733.
[14] Gel’fand, I. M., Minlos, R. A., and Ya Shapiro, Z. (1963). Representations of the Rotation and Lorentz Groups and their Applications (Pergamon Press, Oxford).
[15] Ginzburg, V. L. and Tamm, I. E. (1947). On the theory of spin. Zhurnal Experimentalnoic Teoreticheskoi Fiziki 17, 227–237.
[16] Gitman, D. M. and Shelepin, A. L. (2001). Fields on the Poincaré group: Arbitrary spin description and relativistic wave equations. Introduction of Journal Theoretical Physics 40(3), 603–684. · Zbl 1006.83001 · doi:10.1023/A:1004118431439
[17] Huszar, M. (1970). Angular Momentum and Unitary Spinor Bases of the Lorentz Group, Preprint JINR No. E2–5429, Dubna.
[18] Huszar, M. and Smorodinsky, J. (1970). Representations of the Lorentz Group on the Two-Dimensional Complex Sphere and Two-Particle States, Preprint JINR No. E2-5020, Dubna.
[19] Joos, H. (1962). Zur darstellungstheorie der inhomogenen Lorentzgrouppe als grundlage quantenmechanische kinematick. Fortschr. Phys. 10, 65. · Zbl 0131.44002
[20] Kagan, V. F. (1926). Ueber einige Zahlensysteme, zu denen die Lorentztransformation fürt, Publ. House of Institute of Mathematics, Moscow. · JFM 53.0078.03
[21] Kihlberg, A. (1968). Internal co-ordinates and explicit representations of the Poincaré group. Nuovo Cimento A 53, 592–609. · Zbl 0152.41604 · doi:10.1007/BF02721711
[22] Kihlberg, A. (1970). Fields on a homogeneous space of the Poincaré group. Ann. Inst. Henri Poincaré 13, 57–76.
[23] Lurçat, F. (1964). Quantum field theory and the dynamical role of spin. Physics 1, 95.
[24] Naimark, M. A. (1964). Linear Representations of the Lorentz Group, Pergamon, London. · Zbl 0137.31703
[25] Nilsson, J. and Beskow, A. (1967). The concept of wave function and irreducible representations of the Poincaré group. Arkiv för Fysik 34, 307–324. · Zbl 0172.27403
[26] Petrov, A. Z. (1969). Einstein Spaces, Pergamon Press, Oxford. · Zbl 0174.28305
[27] Rarita, W. and Schwinger, J. (1941). On a theory of particles with half-integral spin. Physical Review 60, 61. · Zbl 0026.28704
[28] Yu Rumer, B. and Fet, A. I. (1977). Group Theory and Quantized Fields, Moscow [in Russian].
[29] Ryder, L. (1985). Quantum Field Theory, Cambridge University Press, Cambridge. · Zbl 0555.46038
[30] Yu Shirokov, M. (1951). Relativistskaia teoria spina. Zhurnal Experimentalnoic Teoreticheskoi Fiziki 21, 748–760.
[31] Silberstein, L. (1907). Elektromagnetische Grundgleichungen in bivectorieller Behandlung. Annals of Physics 22, 579. · JFM 38.0871.02
[32] Ya Smorodinsky, A. and Huszar, M. (1970). Representations of the Lorentz group and the generalization of helicity states. Teor. Mat. Fiz. 4(3), 328–340. · Zbl 0201.58404
[33] Toller, M. (1996). Free quantum fields on the Poincaré group. Journal of Mathematical Physics 37, 2694–2730. · Zbl 0862.22018 · doi:10.1063/1.531537
[34] Varlamov, V. V. (2003). General solutions of relativistic wave equations. International Journal of Theoretical Physics 42(3), 583–633. · Zbl 1027.83003 · doi:10.1023/A:1024498001488
[35] Varlamov, V. V. (2004). Relativistic wavefunctions on the Poincaré group. Journal Physics A: Mathematics and General 37, 5467–5476. · Zbl 1062.81085 · doi:10.1088/0305-4470/37/20/014
[36] Varlamov, V. V. (2003). Maxwell field on the Poincaré group, preprint math-ph/0310051.
[37] Vasiliev, M. A. (1996). Higher-spin gauge theories in four, three and two dimensions. International Journal of Modern Physics D 5, 763–797. · doi:10.1142/S0218271896000473
[38] Weber, H. (1901). Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen (Friedrich Vieweg und Sohn, Braunschweig). · JFM 32.0782.01
[39] Weinberg, S. (1964). Feinman rules for any spin I & II & III. Physical Review 133B, 1318–1332; 134B, 882–896; 181B, 1893–1899 (1969).
[40] Yukawa, H. (1950). Quantum theory of nonlocal fields. I. Free fields. Physical Review 77, 219–226. · Zbl 0036.26705 · doi:10.1103/PhysRev.77.219
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.