×

zbMATH — the first resource for mathematics

Periodicity on discrete dynamical systems generated by a class of rational mappings. (English) Zbl 1116.39008
The authors investigate the problem of global periodicity in discrete dynamical systems generated by rational maps in \(\mathbb R^k\) or \(\mathbb C^k.\) Some results are given.

MSC:
39A12 Discrete version of topics in analysis
39A11 Stability of difference equations (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.aml.2005.11.022 · Zbl 1120.39002 · doi:10.1016/j.aml.2005.11.022
[2] DOI: 10.1080/10236190410001667977 · Zbl 1053.39008 · doi:10.1080/10236190410001667977
[3] DOI: 10.1080/10236190600703031 · Zbl 1127.39010 · doi:10.1080/10236190600703031
[4] DOI: 10.1142/S0218127406015027 · Zbl 1141.37310 · doi:10.1142/S0218127406015027
[5] DOI: 10.1007/s006050170042 · Zbl 1036.11002 · doi:10.1007/s006050170042
[6] Cull P., Difference Equations. From Rabbits to Chaos (2005) · Zbl 1085.39002
[7] DOI: 10.1080/1023619021000054042 · Zbl 1013.39008 · doi:10.1080/1023619021000054042
[8] Grove E.A., Periodicities in Nonlinear Difference Equations (2005) · Zbl 1078.39009
[9] Horn R.A., Matrix Analysis (1991) · Zbl 0729.15001 · doi:10.1017/CBO9780511840371
[10] Kucma M., Iterative Functional Equations 32 (1990) · doi:10.1017/CBO9781139086639
[11] Kulenović M.R.S., Dynamics of Second Order Rational Difference Equations (2002) · Zbl 0981.39011
[12] Lang S., Algebra, 3. ed. (1993)
[13] Mitrinović D.S., Handbook of Number Theory (2006) · Zbl 1151.11300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.